John Dyson has contributed to the study of the hydrodynamic processes that govern a wide variety of astrophysical sources which he has helped explain. In this volume dedicated to him, introductory reviews to a number of the key processes and to the sources themselves are given by leading experts. The book provides a coherent introduction to the astrophysics of diffuse sources suitable for postgraduate students and researchers in astrophysics.
This book is a comprehensive treatment of star formation, one of the most active fields of modern astronomy. The reader is guided through the subject in a logically compelling manner. Starting from a general description of stars and interstellar clouds, the authors delineate the earliest phases of stellar evolution. They discuss formation activity not only in the Milky Way, but also in other galaxies, both now and in the remote past. Theory and observation are thoroughly integrated, with the aid of numerous figures and images. In summary, this volume is an invaluable resource, both as a text for physics and astronomy graduate students, and as a reference for professional scientists.
Ultraviolet Astronomy and the Quest for the Origin of Life addresses the use of astronomical observations in the ultraviolet range to better understand the generation of complex, life-precursor molecules. The origin of RNA is still under debate but seems to be related to the generation of pools of complex organic molecules submitted to heavy cycles of solution in water and drying. This book investigates whether these cycles require a planetary surface or may occur in space by examining both the theoretical and observational aspects of the role of UV radiation in the origin of life. This book offers the latest advances in these studies for astronomers, astrobiologists and planetary scientists. - Addresses both the theoretical and observational aspects of the role of Ultraviolet (UV) radiation in the origin of life - Builds on the requirements to produce prebiotic molecules in space and the implications for the origin of RNA - Investigates the use of ultraviolet observations related to planetary system formation, the evolution of young planetary disks, and the interaction of stars with planetary atmospheres
This is a comprehensive and richly illustrated textbook on the astrophysics of the interstellar and intergalactic medium--the gas and dust, as well as the electromagnetic radiation, cosmic rays, and magnetic and gravitational fields, present between the stars in a galaxy and also between galaxies themselves. Topics include radiative processes across the electromagnetic spectrum; radiative transfer; ionization; heating and cooling; astrochemistry; interstellar dust; fluid dynamics, including ionization fronts and shock waves; cosmic rays; distribution and evolution of the interstellar medium; and star formation. While it is assumed that the reader has a background in undergraduate-level physics, including some prior exposure to atomic and molecular physics, statistical mechanics, and electromagnetism, the first six chapters of the book include a review of the basic physics that is used in later chapters. This graduate-level textbook includes references for further reading, and serves as an invaluable resource for working astrophysicists. Essential textbook on the physics of the interstellar and intergalactic medium Based on a course taught by the author for more than twenty years at Princeton University Covers radiative processes, fluid dynamics, cosmic rays, astrochemistry, interstellar dust, and more Discusses the physical state and distribution of the ionized, atomic, and molecular phases of the interstellar medium Reviews diagnostics using emission and absorption lines Features color illustrations and detailed reference materials in appendices Instructor's manual with problems and solutions (available only to teachers)
All stars are born in groups. The origin of these groups has long been a key question in astronomy, one that interests researchers in star formation, the interstellar medium, and cosmology. This volume summarizes current progress in the field, and includes contributions from both theorists and observers. Star clusters appear with a wide range of properties, and are born in a variety of physical conditions. Yet the key question remains: How do diffuse clouds of gas condense into the collections of luminous objects we call stars? This book will benefit graduate students, newcomers to the field, and also experienced scientists seeking a convenient reference.
Theideatocelebrate50yearsoftheSalpeterIMFoccurredduringtherecent IAU General Assembly in Sydney, Australia. Indeed, it was from Australia that in July 1954 Ed Salpeter submitted his famous paper "The Luminosity Function and Stellar Evolution" with the rst derivation of the empirical stellar IMF. This contribution was to become one of the most famous astrophysics papers of the last 50 years. Here, Ed Salpeter introduced the terms "original mass function" and "original luminosity function", and estimated the pro- bility for the creation of stars of given mass at a particular time, now known as the "Salpeter Initial Mass Function", or IMF. The paper was written at the Australian National University in Canberra on leave of absence from Cornell University (USA) and was published in 1955 as 7 page note in the Astroph- ical Journal Vol. 121, page 161. To celabrate the 50th anniversary of the IMF, along with Ed Salpeter’s 80th birthday, we have organized a special meeting that brought together scientists involved in the empirical determination of this fundamental quantity in a va- ety of astrophysical contexts and other scientists fascinated by the deep imp- cations of the IMF on star formation theories, on the physical conditions of the gas before and after star formation, and on galactic evolution and cosmology. The meeting took place in one of the most beautiful spots of the Tuscan countryside, far from the noise and haste of everyday life.
This is a treatment of the fundamentals of cosmology and galaxies discussed from theoretical, experimental and observational perspectives and providing a basic reference source for both specialists and non-specialists. Articles from non-equilibrium relativistic cosmology to the evolution of galaxies are included.
Origins of the Earth, Moon, and Life: An Interdisciplinary Approach presents state-of-the-art knowledge that is based on theories, experiments, observations, calculations, and analytical data from five astro-sciences, astronomy, astrobiology, astrogeology, astrophysics, and cosmochemistry. Beginning with the origin of elements, and moving on to cover the formation of the early Solar System, the giant impact model of the Earth and Moon, the oldest records of life, and the possibility of life on other planets in the Solar System, this interdisciplinary reference provides a complex understanding of the planets and the formation of life. Synthesizing concepts from all branches of astro-sciences into one, the book is a valuable reference for researchers in astrogeology, astrophysics, cosmochemistry, astrobiology, astronomy, and other space science fields, helping users better understand the intersection of these sciences. - Includes extensive figures and tables to enhance key concepts - Uses callout boxes throughout to provide context and deeper explanations - Presents up-to-date information on the universe, stars, planets, moons, and life in the solar system - Combines knowledge from the fields of astrogeology, astrophysics, cosmochemistry, astrobiology, and astronomy, helping readers understand the origins of the Earth, the moon, and life in our solar system