Discovering Knowledge in Data

Discovering Knowledge in Data

Author: Daniel T. Larose

Publisher: John Wiley & Sons

Published: 2005-01-28

Total Pages: 240

ISBN-13: 0471687537

DOWNLOAD EBOOK

Learn Data Mining by doing data mining Data mining can be revolutionary-but only when it's done right. The powerful black box data mining software now available can produce disastrously misleading results unless applied by a skilled and knowledgeable analyst. Discovering Knowledge in Data: An Introduction to Data Mining provides both the practical experience and the theoretical insight needed to reveal valuable information hidden in large data sets. Employing a "white box" methodology and with real-world case studies, this step-by-step guide walks readers through the various algorithms and statistical structures that underlie the software and presents examples of their operation on actual large data sets. Principal topics include: * Data preprocessing and classification * Exploratory analysis * Decision trees * Neural and Kohonen networks * Hierarchical and k-means clustering * Association rules * Model evaluation techniques Complete with scores of screenshots and diagrams to encourage graphical learning, Discovering Knowledge in Data: An Introduction to Data Mining gives students in Business, Computer Science, and Statistics as well as professionals in the field the power to turn any data warehouse into actionable knowledge. An Instructor's Manual presenting detailed solutions to all the problems in the book is available online.


Knowledge Discovery from Data Streams

Knowledge Discovery from Data Streams

Author: Joao Gama

Publisher: CRC Press

Published: 2010-05-25

Total Pages: 256

ISBN-13: 1439826129

DOWNLOAD EBOOK

Since the beginning of the Internet age and the increased use of ubiquitous computing devices, the large volume and continuous flow of distributed data have imposed new constraints on the design of learning algorithms. Exploring how to extract knowledge structures from evolving and time-changing data, Knowledge Discovery from Data Streams presents


Advances in Knowledge Discovery and Data Mining

Advances in Knowledge Discovery and Data Mining

Author: Usama M. Fayyad

Publisher:

Published: 1996

Total Pages: 638

ISBN-13:

DOWNLOAD EBOOK

Eight sections of this book span fundamental issues of knowledge discovery, classification and clustering, trend and deviation analysis, dependency derivation, integrated discovery systems, augumented database systems and application case studies. The appendices provide a list of terms used in the literature of the field of data mining and knowledge discovery in databases, and a list of online resources for the KDD researcher.


Knowledge Graphs and Big Data Processing

Knowledge Graphs and Big Data Processing

Author: Valentina Janev

Publisher: Springer Nature

Published: 2020-07-15

Total Pages: 212

ISBN-13: 3030531996

DOWNLOAD EBOOK

This open access book is part of the LAMBDA Project (Learning, Applying, Multiplying Big Data Analytics), funded by the European Union, GA No. 809965. Data Analytics involves applying algorithmic processes to derive insights. Nowadays it is used in many industries to allow organizations and companies to make better decisions as well as to verify or disprove existing theories or models. The term data analytics is often used interchangeably with intelligence, statistics, reasoning, data mining, knowledge discovery, and others. The goal of this book is to introduce some of the definitions, methods, tools, frameworks, and solutions for big data processing, starting from the process of information extraction and knowledge representation, via knowledge processing and analytics to visualization, sense-making, and practical applications. Each chapter in this book addresses some pertinent aspect of the data processing chain, with a specific focus on understanding Enterprise Knowledge Graphs, Semantic Big Data Architectures, and Smart Data Analytics solutions. This book is addressed to graduate students from technical disciplines, to professional audiences following continuous education short courses, and to researchers from diverse areas following self-study courses. Basic skills in computer science, mathematics, and statistics are required.


Data Mining with Rattle and R

Data Mining with Rattle and R

Author: Graham Williams

Publisher: Springer Science & Business Media

Published: 2011-08-04

Total Pages: 382

ISBN-13: 144199890X

DOWNLOAD EBOOK

Data mining is the art and science of intelligent data analysis. By building knowledge from information, data mining adds considerable value to the ever increasing stores of electronic data that abound today. In performing data mining many decisions need to be made regarding the choice of methodology, the choice of data, the choice of tools, and the choice of algorithms. Throughout this book the reader is introduced to the basic concepts and some of the more popular algorithms of data mining. With a focus on the hands-on end-to-end process for data mining, Williams guides the reader through various capabilities of the easy to use, free, and open source Rattle Data Mining Software built on the sophisticated R Statistical Software. The focus on doing data mining rather than just reading about data mining is refreshing. The book covers data understanding, data preparation, data refinement, model building, model evaluation, and practical deployment. The reader will learn to rapidly deliver a data mining project using software easily installed for free from the Internet. Coupling Rattle with R delivers a very sophisticated data mining environment with all the power, and more, of the many commercial offerings.


DAMA-DMBOK

DAMA-DMBOK

Author: Dama International

Publisher:

Published: 2017

Total Pages: 628

ISBN-13: 9781634622349

DOWNLOAD EBOOK

Defining a set of guiding principles for data management and describing how these principles can be applied within data management functional areas; Providing a functional framework for the implementation of enterprise data management practices; including widely adopted practices, methods and techniques, functions, roles, deliverables and metrics; Establishing a common vocabulary for data management concepts and serving as the basis for best practices for data management professionals. DAMA-DMBOK2 provides data management and IT professionals, executives, knowledge workers, educators, and researchers with a framework to manage their data and mature their information infrastructure, based on these principles: Data is an asset with unique properties; The value of data can be and should be expressed in economic terms; Managing data means managing the quality of data; It takes metadata to manage data; It takes planning to manage data; Data management is cross-functional and requires a range of skills and expertise; Data management requires an enterprise perspective; Data management must account for a range of perspectives; Data management is data lifecycle management; Different types of data have different lifecycle requirements; Managing data includes managing risks associated with data; Data management requirements must drive information technology decisions; Effective data management requires leadership commitment.


Big Data and Knowledge Sharing in Virtual Organizations

Big Data and Knowledge Sharing in Virtual Organizations

Author: Gyamfi, Albert

Publisher: IGI Global

Published: 2019-01-25

Total Pages: 336

ISBN-13: 1522575200

DOWNLOAD EBOOK

Knowledge in its pure state is tacit in nature—difficult to formalize and communicate—but can be converted into codified form and shared through both social interactions and the use of IT-based applications and systems. Even though there seems to be considerable synergies between the resulting huge data and the convertible knowledge, there is still a debate on how the increasing amount of data captured by corporations could improve decision making and foster innovation through effective knowledge-sharing practices. Big Data and Knowledge Sharing in Virtual Organizations provides innovative insights into the influence of big data analytics and artificial intelligence and the tools, methods, and techniques for knowledge-sharing processes in virtual organizations. The content within this publication examines cloud computing, machine learning, and knowledge sharing. It is designed for government officials and organizations, policymakers, academicians, researchers, technology developers, and students.


Knowledge of the Law in the Big Data Age

Knowledge of the Law in the Big Data Age

Author: G. Peruginelli

Publisher: IOS Press

Published: 2019-07-23

Total Pages: 306

ISBN-13: 1614999856

DOWNLOAD EBOOK

The changes brought about by digital technology and the consequent explosion of information known as Big Data have brought opportunities and challenges in all areas of society, and the law is no exception. This book, Knowledge of the Law in the Big Data Age contains a selection of the papers presented at the conference ‘Law via the Internet 2018’, held in Florence, Italy, on 11-12 October 2018. This annual conference of the ‘Free Access to Law Movement’ (http://www.fatlm.org) hosted more than 60 international speakers from universities, government and research bodies as well as EU institutions. Topics covered range from free access to law and Big Data and data analytics in the legal domain, to policy issues concerning access, publishing and the dissemination of legal information, tools to support democratic participation and opportunities for digital democracy. The book is divided into 3 sections: Part I provides an introductory background, covering aspects such as the evolution of legal science and models for representing the law; Part II addresses the present and future of access to law and to various legal information sources; and Part III covers updates in projects, initiatives, and concrete achievements in the field. The book provides an overview of the practical implementation of legal information systems and the tools to manage this special kind of information, as well as some of the critical issues which must be faced, and will be of interest to all those working at the intersection of law and technology.


The Essentials of Data Science: Knowledge Discovery Using R

The Essentials of Data Science: Knowledge Discovery Using R

Author: Graham J. Williams

Publisher: CRC Press

Published: 2017-07-28

Total Pages: 295

ISBN-13: 1351647490

DOWNLOAD EBOOK

The Essentials of Data Science: Knowledge Discovery Using R presents the concepts of data science through a hands-on approach using free and open source software. It systematically drives an accessible journey through data analysis and machine learning to discover and share knowledge from data. Building on over thirty years’ experience in teaching and practising data science, the author encourages a programming-by-example approach to ensure students and practitioners attune to the practise of data science while building their data skills. Proven frameworks are provided as reusable templates. Real world case studies then provide insight for the data scientist to swiftly adapt the templates to new tasks and datasets. The book begins by introducing data science. It then reviews R’s capabilities for analysing data by writing computer programs. These programs are developed and explained step by step. From analysing and visualising data, the framework moves on to tried and tested machine learning techniques for predictive modelling and knowledge discovery. Literate programming and a consistent style are a focus throughout the book.


Enterprise Knowledge Management

Enterprise Knowledge Management

Author: David Loshin

Publisher: Morgan Kaufmann

Published: 2001

Total Pages: 516

ISBN-13: 9780124558403

DOWNLOAD EBOOK

This volume presents a methodology for defining, measuring and improving data quality. It lays out an economic framework for understanding the value of data quality, then outlines data quality rules and domain- and mapping-based approaches to consolidating enterprise knowledge.