The Lion Way

The Lion Way

Author: Roberto Battiti

Publisher: Createspace Independent Publishing Platform

Published: 2014-02-21

Total Pages: 0

ISBN-13: 9781496034021

DOWNLOAD EBOOK

Learning and Intelligent Optimization (LION) is the combination of learning from data and optimization applied to solve complex and dynamic problems. The LION way is about increasing the automation level and connecting data directly to decisions and actions. More power is directly in the hands of decision makers in a self-service manner, without resorting to intermediate layers of data scientists. LION is a complex array of mechanisms, like the engine in an automobile, but the user (driver) does not need to know the inner workings of the engine in order to realize its tremendous benefits. LION's adoption will create a prairie fire of innovation which will reach most businesses in the next decades. Businesses, like plants in wildfire-prone ecosystems, will survive and prosper by adapting and embracing LION techniques, or they risk being transformed from giant trees to ashes by the spreading competition.


Autonomous Horizons

Autonomous Horizons

Author: Greg Zacharias

Publisher: Independently Published

Published: 2019-04-05

Total Pages: 420

ISBN-13: 9781092834346

DOWNLOAD EBOOK

Dr. Greg Zacharias, former Chief Scientist of the United States Air Force (2015-18), explores next steps in autonomous systems (AS) development, fielding, and training. Rapid advances in AS development and artificial intelligence (AI) research will change how we think about machines, whether they are individual vehicle platforms or networked enterprises. The payoff will be considerable, affording the US military significant protection for aviators, greater effectiveness in employment, and unlimited opportunities for novel and disruptive concepts of operations. Autonomous Horizons: The Way Forward identifies issues and makes recommendations for the Air Force to take full advantage of this transformational technology.


Introduction to Information Retrieval

Introduction to Information Retrieval

Author: Christopher D. Manning

Publisher: Cambridge University Press

Published: 2008-07-07

Total Pages:

ISBN-13: 1139472100

DOWNLOAD EBOOK

Class-tested and coherent, this textbook teaches classical and web information retrieval, including web search and the related areas of text classification and text clustering from basic concepts. It gives an up-to-date treatment of all aspects of the design and implementation of systems for gathering, indexing, and searching documents; methods for evaluating systems; and an introduction to the use of machine learning methods on text collections. All the important ideas are explained using examples and figures, making it perfect for introductory courses in information retrieval for advanced undergraduates and graduate students in computer science. Based on feedback from extensive classroom experience, the book has been carefully structured in order to make teaching more natural and effective. Slides and additional exercises (with solutions for lecturers) are also available through the book's supporting website to help course instructors prepare their lectures.


Person Re-Identification

Person Re-Identification

Author: Shaogang Gong

Publisher: Springer Science & Business Media

Published: 2014-01-03

Total Pages: 446

ISBN-13: 144716296X

DOWNLOAD EBOOK

The first book of its kind dedicated to the challenge of person re-identification, this text provides an in-depth, multidisciplinary discussion of recent developments and state-of-the-art methods. Features: introduces examples of robust feature representations, reviews salient feature weighting and selection mechanisms and examines the benefits of semantic attributes; describes how to segregate meaningful body parts from background clutter; examines the use of 3D depth images and contextual constraints derived from the visual appearance of a group; reviews approaches to feature transfer function and distance metric learning and discusses potential solutions to issues of data scalability and identity inference; investigates the limitations of existing benchmark datasets, presents strategies for camera topology inference and describes techniques for improving post-rank search efficiency; explores the design rationale and implementation considerations of building a practical re-identification system.