Systematically develops the theory of Frobenius splittings and covers all its major developments. Concise, efficient exposition unfolds from basic introductory material on Frobenius splittings—definitions, properties and examples—to cutting edge research.
Systematically develops the theory of Frobenius splittings and covers all its major developments. Concise, efficient exposition unfolds from basic introductory material on Frobenius splittings—definitions, properties and examples—to cutting edge research.
This book contains the proceedings of the 2009-2011 Southeastern Lie Theory Workshop Series, held October 9-11, 2009 at North Carolina State University, May 22-24, 2010, at the University of Georgia, and June 1-4, 2011 at the University of Virginia. Some of the articles, written by experts in the field, survey recent developments while others include new results in Lie algebras, quantum groups, finite groups, and algebraic groups.
This book surveys fundamental current topics in these two areas of research, emphasising the lively interaction between them. Volume 1 contains expository papers ideal for those entering the field.
This volume uses a unified approach to representation theory and automorphic forms. It collects papers, written by leading mathematicians, that track recent progress in the expanding fields of representation theory and automorphic forms and their association with number theory and differential geometry. Topics include: Automorphic forms and distributions, modular forms, visible-actions, Dirac cohomology, holomorphic forms, harmonic analysis, self-dual representations, and Langlands Functoriality Conjecture, Both graduate students and researchers will find inspiration in this volume.
D-modules continues to be an active area of stimulating research in such mathematical areas as algebraic, analysis, differential equations, and representation theory. Key to D-modules, Perverse Sheaves, and Representation Theory is the authors' essential algebraic-analytic approach to the theory, which connects D-modules to representation theory and other areas of mathematics. To further aid the reader, and to make the work as self-contained as possible, appendices are provided as background for the theory of derived categories and algebraic varieties. The book is intended to serve graduate students in a classroom setting and as self-study for researchers in algebraic geometry, representation theory.
Professor Xihua Cao (1920-2005) was a leading scholar at East China Normal University (ECNU) and a famous algebraist in China. His contribution to the Chinese academic circle is particularly the formation of a world-renowned 'ECNU School' in algebra, covering research areas include algebraic groups, quantum groups, algebraic geometry, Lie algebra, algebraic number theory, representation theory and other hot fields. In January 2020, in order to commemorate Professor Xihua Cao's centenary birthday, East China Normal University held a three-day academic conference. Scholars at home and abroad gave dedications or delivered lectures in the conference. This volume originates from the memorial conference, collecting the dedications of scholars, reminiscences of family members, and 16 academic articles written based on the lectures in the conference, covering a wide range of research hot topics in algebra. The book shows not only scholars' respect and memory for Professor Xihua Cao, but also the research achievements of Chinese scholars at home and abroad.
This volume contains the proceedings of the AMS Special Session on Combinatorial and Geometric Representation Theory, held virtually on November 20–21, 2021. The articles offer an engaging look into recent advancements in geometric representation theory. Despite diverse subject matters, a common thread uniting the articles of this volume is the power of geometric methods. The authors explore the following five contemporary topics in geometric representation theory: equivariant motivic Chern classes; equivariant Hirzebruch classes and equivariant Chern-Schwartz-MacPherson classes of Schubert cells; locally semialgebraic spaces, Nash manifolds, and their superspace counterparts; support varieties of Lie superalgebras; wreath Macdonald polynomials; and equivariant extensions and solutions of the Deligne-Simpson problem. Each article provides a well-structured overview of its topic, highlighting the emerging theories developed by the authors and their colleagues.
This book, which explores recent trends in the representation theory of algebras and its exciting interaction with geometry, topology, commutative algebra, Lie algebras, combinatorics, quantum algebras, and theoretical field, is conceived as a handbook to provide easy access to the present state of knowledge and stimulate further development. The many topics discussed include quivers, quivers with potential, bound quiver algebras, Jacobian algebras, cluster algebras and categories, Calabi-Yau algebras and categories, triangulated and derived categories, and quantum loop algebras. This book consists of thirteen self-contained expository survey and research articles and is addressed to researchers and graduate students in algebra as well as a broader mathematical community. The articles contain a large number of examples and open problems and give new perspectives for research in the field.