Life in a pond is exciting. Birds, bugs, and shrews skitter across the surface. Turtles and fish zip along under the water’s surface. Beavers, herons, and others make themselves at home by the pond’s edge. In this book, readers in grades 3-5 will discover how these animals survive and thrive in freshwater pond biomes around the world. This NGSS-aligned series is packed with interesting facts and vivid photos that introduce readers to a variety of land and water animals. Each book includes a glossary, comprehension questions, and an activity for home or the classroom.
This classroom resource provides clear, concise scientific information in an understandable and enjoyable way about water and aquatic life. Spanning the hydrologic cycle from rain to watersheds, aquifers to springs, rivers to estuaries, ample illustrations promote understanding of important concepts and clarify major ideas. Aquatic science is covered comprehensively, with relevant principles of chemistry, physics, geology, geography, ecology, and biology included throughout the text. Emphasizing water sustainability and conservation, the book tells us what we can do personally to conserve for the future and presents job and volunteer opportunities in the hope that some students will pursue careers in aquatic science. Texas Aquatic Science, originally developed as part of a multi-faceted education project for middle and high school students, can also be used at the college level for non-science majors, in the home-school environment, and by anyone who educates kids about nature and water. To learn more about The Meadows Center for Water and the Environment, sponsors of this book's series, please click here.
"Covers the freshwater biomes that exist in wetlands, ponds and lakes, and rivers and streams, examining all aspects that define these biomes: vegetation, geographical distribution, challenges posed by the environment, adaptation of the plants and animals to the environment, and conservation efforts"--Publisher's description.
The Principles of Biology sequence (BI 211, 212 and 213) introduces biology as a scientific discipline for students planning to major in biology and other science disciplines. Laboratories and classroom activities introduce techniques used to study biological processes and provide opportunities for students to develop their ability to conduct research.
This Special Issue consists of fourteen original scientific articles concerning different problems associated with the water quality of freshwater ecosystems in a temperate climate. Most of the articles deal with the relationship between water quality and the structure of ecosystem biocenoses. The conclusion of these articles confirms the fact that the deterioration of water quality has a direct impact on the quantitative and qualitative structure of biocenoses. This is accompanied by a decline in biodiversity and the disappearance of rare plant and animal species. They also draw attention to the particular importance of internal physical and chemical differentiation within the aquatic ecosystem, both in horizontal and vertical dimensions. The problem of ensuring proper ecological conditions and good quality of water in freshwater aquatic ecosystems is also raised, and various methods for the restoration of water bodies are presented. This Special Issue contributes to a better understanding of the causes of water quality deterioration, the mechanisms responsible for the functioning of ecosystems, including the decrease of biodiversity and the possibilities of improving their condition. Thus, it can be helpful for regaining the good ecological status of water bodies required by the Water Framework Directive.
Life in the estuary is always changing. Ocean tides of salt water flow in and out of the estuary and mix with the fresh water that flows from rivers and streams. The animals that swim or wade in the waters or make the mudflats their homes must have physical or social adaptations that allow them to live in the salty mix. In this book, readers in grades 3-5 will discover how and why animals survive and thrive in these sheltered biomes. This NGSS-aligned series is packed with interesting facts and vivid photos that introduce readers to a variety of land and water animals. Each book includes a glossary, comprehension questions, and an activity for home or the classroom.
This text examines the impact of climate change on freshwater ecosystems, past, present and future. It especially considers the interactions between climate change and other drivers of change including hydromorphological modification, nutrient loading, acid deposition and contamination by toxic substances using evidence from palaeolimnology, time-series analysis, space-for-time substitution, laboratory and field experiments and process modelling. The book evaluates these processes in relation to extreme events, seasonal changes in ecosystems, trends over decadal-scale time periods, mitigation strategies and ecosystem recovery. The book is also concerned with how aspects of hydrophysical, hydrochemical and ecological change can be used as early indicators of climate change in aquatic ecosystems and it addresses the implications of future climate change for freshwater ecosystem management at the catchment scale. This is an ideal book for the scientific research community, but is also accessible to Masters and senior undergraduate students.
This unique textbook takes a broad look at the rapidly expanding field of freshwater microbiology. Concentrating on the interactions between viruses, bacteria, algae, fungi and micro-invertebrates, the book gives a wide biological appeal. Alongside conventional aspects such as phytoplankton characterisation, seasonal changes and nutrient cycles, the title focuses on the dynamic and applied aspects that are not covered within the current textbooks in the field. Complete coverage of all fresh water biota from viruses to invertebrates Unique focus on microbial interactions including coverage of biofilms, important communities on all exposed rivers and lakes. New information on molecular and microscopical techniques including a study of gene exchange between bacteria in the freshwater environment. Unique emphasis on the applied aspects of freshwater microbiology with particular emphasis on biodegradation and the causes and remediation of eutrophication and algal blooms.