A friendly book on the power of true engagement. It is for the executive, leader and team member who desires to create and sustain a culture that makes a meaningful contribution. It is about personal alignment, collaboration and making a positive impact.
A truly Galilean-class volume, this book introduces a new method in theory formation, completing the tools of epistemology. It covers a broad spectrum of theoretical and mathematical physics by researchers from over 20 nations from four continents. Like Vigier himself, the Vigier symposia are noted for addressing avant-garde, cutting-edge topics in contemporary physics. Among the six proceedings honoring J.-P. Vigier, this is perhaps the most exciting one as several important breakthroughs are introduced for the first time. The most interesting breakthrough in view of the recent NIST experimental violations of QED is a continuation of the pioneering work by Vigier on tight bound states in hydrogen. The new experimental protocol described not only promises empirical proof of large-scale extra dimensions in conjunction with avenues for testing string theory, but also implies the birth of the field of unified field mechanics, ushering in a new age of discovery. Work on quantum computing redefines the qubit in a manner that the uncertainty principle may be routinely violated. Other breakthroughs occur in the utility of quaternion algebra in extending our understanding of the nature of the fermionic singularity or point particle. There are several other discoveries of equal magnitude, making this volume a must-have acquisition for the library of any serious forward-looking researchers.
In this book, Stefan Th. Gries provides an overview on how quantitative corpus methods can provide insights to cognitive/usage-based linguistics and selected psycholinguistic questions. Topics include the corpus linguistics in general, its most important methodological tools, its statistical nature, and the relation of all these topics to past and current usage-based theorizing. Central notions discussed in detail include frequency, dispersion, context, and others in a variety of applications and case studies; four practice sessions offer short introductions of how to compute various corpus statistics with the open source programming language and environment R.
Covers the State of the Art in Superfluidity and SuperconductivitySuperfluid States of Matter addresses the phenomenon of superfluidity/superconductivity through an emergent, topologically protected constant of motion and covers topics developed over the past 20 years. The approach is based on the idea of separating universal classical-field superf
The orientation and physical context of the CMT Series of Workshops have always been cross-disciplinary, but with an emphasis placed on the common concerns of theorists applying many-particle concepts in diverse areas of physics. In this spirit, CMT33 chose to focus special attention on exotic fermionic and bosonic systems, quantum magnets and their quantum and thermal phase transitions, novel condensed matter systems for renewable energy sources, the physics of nanosystems and nanotechnology, and applications of molecular dynamics and density functional theory.
The orientation and physical context of the CMT Series of Workshops have always been cross-disciplinary, but with an emphasis placed on the common concerns of theorists applying many-particle concepts in diverse areas of physics. In this spirit, CMT33 chose to focus special attention on exotic fermionic and bosonic systems, quantum magnets and their quantum and thermal phase transitions, novel condensed matter systems for renewable energy sources, the physics of nanosystems and nanotechnology, and applications of molecular dynamics and density functional theory./a
"Hailed as "an excellent survey" by Physics Today, this encyclopedic reference volume covers virtually every aspect of neutron physics. Its accessible treatment constitutes a major compilation of fundamental properties and interactions, ranging from the neutron's role in astro-particle physics to its use in nuclear energy generation and the study of condensed matter systems. 1994 edition"--
The Thirty-First International Workshop on Condensed Matter Theories (CMT31) held in Bangkok focused on the many roles played by ab initio theory, modeling, and high-performance computing in condensed matter and materials science, providing a forum for the discussion of recent advances and exploration of new problems. Fifty-six invited papers were presented, of which 38 appear as chapters in this volume. Reports of recent results generated lively debate on two-dimensional electron systems, the metal-insulator transition, dilute magnetic semiconductors, effects of disorder, magnetoresistence phenomena, ferromagnetic stripes, quantum Hall systems, strongly correlated Fermi systems, superconductivity, dilute fermionic and bosonic gases, nanostructured materials, plasma instabilities, quantum fluid mixtures, and helium in reduced geometries.
PREVIOUS EDITIONThis textbook introduces the “Fundamentals of Multimedia”, addressing real issues commonly faced in the workplace. The essential concepts are explained in a practical way to enable students to apply their existing skills to address problems in multimedia. Fully revised and updated, this new edition now includes coverage of such topics as 3D TV, social networks, high-efficiency video compression and conferencing, wireless and mobile networks, and their attendant technologies. Features: presents an overview of the key concepts in multimedia, including color science; reviews lossless and lossy compression methods for image, video and audio data; examines the demands placed by multimedia communications on wired and wireless networks; discusses the impact of social media and cloud computing on information sharing and on multimedia content search and retrieval; includes study exercises at the end of each chapter; provides supplementary resources for both students and instructors at an associated website.
This textbook, now in its third edition, provides a formative introduction to the structure of matter that will serve as a sound basis for students proceeding to more complex courses, thus bridging the gap between elementary physics and topics pertaining to research activities. The focus is deliberately limited to key concepts of atoms, molecules and solids, examining the basic structural aspects without paying detailed attention to the related properties. For many topics the aim has been to start from the beginning and to guide the reader to the threshold of advanced research. This edition includes four new chapters dealing with relevant phases of solid matter (magnetic, electric and superconductive) and the related phase transitions. The book is based on a mixture of theory and solved problems that are integrated into the formal presentation of the arguments. Readers will find it invaluable in enabling them to acquire basic knowledge in the wide and wonderful field of condensed matter and to understand how phenomenological properties originate from the microscopic, quantum features of nature.