Free-Breathing Radial Magnetic Resonance Imaging Quantification of Fat and R2*

Free-Breathing Radial Magnetic Resonance Imaging Quantification of Fat and R2*

Author: Tess Armstrong

Publisher:

Published: 2018

Total Pages: 185

ISBN-13:

DOWNLOAD EBOOK

Purpose Magnetic resonance imaging (MRI) can non-invasively quantify fat and the transverse relaxation rate (R2*) in the human body. This quantitative information can provide further insight about diseases such as non-alcoholic fatty liver disease (NAFLD), obesity, and ischemic placental disease (IPD). Conventional MRI methods for quantifying fat and R2* require breath-holding, which limits the spatial resolution, volumetric coverage, and signal-to-noise ratio that may be achieved. Moreover, several subject populations, including sick, elderly, and mentally impaired patients, as well as children, infants, and pregnant women, may have difficulty performing a breath-hold or are unable to breath-hold. The purpose of this work is to develop and evaluate a new free-breathing 3D stack-of-radial MRI technique (FB radial) for fat and R2* quantification at 3 Tesla (T) that overcomes the aforementioned limitations of conventional breath-holding MRI. Methods To enable free-breathing MRI, a multiecho golden-angle ordered 3D stack-of-radial radiofrequency-spoiled gradient echo sequence with gradient calibration and correction (FB radial) was developed. First, to evaluate FB radial without motion, fat quantification accuracy using FB radial was compared to conventional Cartesian and reference single-voxel magnetic resonance spectroscopy (SVS) sequences using a fat fraction phantom and in the pelvis of five healthy subjects at 3 T. To evaluate FB radial fat quantification accuracy in subjects capable of breath-holding, a population consisting of eleven healthy adults were recruited and imaged at 3 T. The fat quantification accuracy of FB radial was compared to conventional breath-held Cartesian (BH Cartesian) MRI and reference breath-held SVS (BH SVS). The feasibility and repeatability of FB radial for hepatic fat quantification was evaluated in children, which represents a population that may have limited breath-hold ability or may have difficulty complying with operator instructions. Ten healthy children and nine overweight children with NAFLD, 7-17 years of age, were imaged at 3 T using FB radial, BH Cartesian and BH SVS. Acquisitions were performed twice to assess repeatability. Images and proton-density fat fraction (PDFF) maps were scored for image quality. Liver coverage was measured. Ten healthy infants aged 2-7 months were recruited to evaluate the feasibility of FB radial for quantifying hepatic fat and body composition in a population incapable of breath-holding. The preparation time and scan time (median i interquartile range) for each non-sedated MRI exam was recorded. Abdominal and head and chest FB radial scans and abdominal Cartesian scans were performed. Abdominal scans were scored for motion artifacts by a radiologist, masked to the trajectory. Visceral adipose tissue (VAT), subcutaneous adipose tissue (SAT), and brown adipose tissue (BAT) (volume and PDFF) and hepatic PDFF were measured using FB radial. Repeatability of FB radial hepatic PDFF was assessed. To evaluate the quantitative accuracy of FB radial for R2* mapping without motion, FB radial was compared to a conventional Cartesian sequence using a R2* phantom. To evaluate FB radial R2* mapping in the presence of motion, thirty subjects with normal pregnancies and three subjects with ischemic placental disease (IPD) were scanned twice: between 14-18 and 19-23 weeks gestational age (GA). Feasibility and repeatability of FB radial placental R2* mapping was assessed. The mean and spatial coefficient of variation (CV) of placental R2* was determined for all subjects, and separately for anterior and posterior placentas, at each GA range. For all analyses, quantitative accuracy of fat or R2* quantification was evaluated using linear correlation (Pearson's correlation coefficient, r; Lin's concordance correlation coefficient, c) and Bland-Altman analyses (mean difference, MD; limits of agreement, LoA = MD i 1.96 i standard deviation). The repeatability of FB radial between back-to-back scans for fat or R2* quantification was assessed by calculating the within-technique mean difference (MDwithin) and the coefficient of repeatability (CR). To compare image quality between FB radial and BH Cartesian, differences in the distribution of scores between FB radial and Cartesian were determined using McNemar-Bowker tests. For all statistical analyses, a p-value (P) 0.05 was considered significant. Results In a fat fraction phantom, FB radial demonstrated accuracy with r and c 0.995 (P 0.001), absolute MD 2.2 i 4.9% compared to SVS and absolute MD 0.6 i 3.3% compared to Cartesian. In the pelvis of healthy adults, FB radial demonstrated fat quantification accuracy with absolute MD 1.2 i 3.2% in low fat fraction regions ( 5% PDFF) and absolute MD


Quantitative Magnetic Resonance Imaging

Quantitative Magnetic Resonance Imaging

Author: Nicole Seiberlich

Publisher: Academic Press

Published: 2020-11-18

Total Pages: 1094

ISBN-13: 0128170581

DOWNLOAD EBOOK

Quantitative Magnetic Resonance Imaging is a ‘go-to’ reference for methods and applications of quantitative magnetic resonance imaging, with specific sections on Relaxometry, Perfusion, and Diffusion. Each section will start with an explanation of the basic techniques for mapping the tissue property in question, including a description of the challenges that arise when using these basic approaches. For properties which can be measured in multiple ways, each of these basic methods will be described in separate chapters. Following the basics, a chapter in each section presents more advanced and recently proposed techniques for quantitative tissue property mapping, with a concluding chapter on clinical applications. The reader will learn: The basic physics behind tissue property mapping How to implement basic pulse sequences for the quantitative measurement of tissue properties The strengths and limitations to the basic and more rapid methods for mapping the magnetic relaxation properties T1, T2, and T2* The pros and cons for different approaches to mapping perfusion The methods of Diffusion-weighted imaging and how this approach can be used to generate diffusion tensor maps and more complex representations of diffusion How flow, magneto-electric tissue property, fat fraction, exchange, elastography, and temperature mapping are performed How fast imaging approaches including parallel imaging, compressed sensing, and Magnetic Resonance Fingerprinting can be used to accelerate or improve tissue property mapping schemes How tissue property mapping is used clinically in different organs Structured to cater for MRI researchers and graduate students with a wide variety of backgrounds Explains basic methods for quantitatively measuring tissue properties with MRI - including T1, T2, perfusion, diffusion, fat and iron fraction, elastography, flow, susceptibility - enabling the implementation of pulse sequences to perform measurements Shows the limitations of the techniques and explains the challenges to the clinical adoption of these traditional methods, presenting the latest research in rapid quantitative imaging which has the possibility to tackle these challenges Each section contains a chapter explaining the basics of novel ideas for quantitative mapping, such as compressed sensing and Magnetic Resonance Fingerprinting-based approaches


Development of Magnetic Resonance Imaging (MRI) Methods for in Vivo Quantification of Lipids in Preclinical Models

Development of Magnetic Resonance Imaging (MRI) Methods for in Vivo Quantification of Lipids in Preclinical Models

Author: Roberto Salvati

Publisher:

Published: 2015

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Obesity is associated with increased morbidity and mortality linked to many diseases, including type 2 diabetes, hypertension and disease nonalcoholic fatty liver. Recently, 1H magnetic resonance imaging (MRI) has emerged as the method of choice for non-invasive fat quantification. In this thesis, MRI methodologies were investigated for in vitro (MR phantoms) and in vivo (mice) measurements on a 4.7T preclinical scanner. Two algorithms of fat quantifications - the Dixon's method and IDEAL algorithm - were considered. The performances of the IDEAL algorithm were analyzed as a function of tissue properties (T2*, fat fraction and fat spectral model), MRI acquisition parameters (echo times, number of echoes) and experimental parameters (SNR and field map). In phantoms, the standard approach of single-T2* IDEAL showed some limitations that could be overcome by optimizing the number of echoes. A novel method to determine the ground truth values of T2* of water and T2* of fat was here proposed. For in vivo measurements, different analyses were performed using the IDEAL algorithm in liver and muscle. Statistical analysis on ROI measurements showed that the optimal choice of the number of echoes was equal to three for fat quantification and six or more for T2* quantification. The fat fraction values, calculated with IDEAL algorithm, were statistically similar to the values obtained with Dixon's method. Finally, a method for generating reference signals mimicking fat-water systems (Fat Virtual Phantom MRI), without using physical objects, was proposed. These virtual phantoms, which display realistic noise characteristics, represent an attractive alternative to physical phantoms for providing a reference signal in MRI measurements.


Quantitative Analysis and Monte Carlo Modeling of Fat-Mediated MRI Relaxation

Quantitative Analysis and Monte Carlo Modeling of Fat-Mediated MRI Relaxation

Author: Utsav Shrestha

Publisher:

Published: 2020

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Hepatic steatosis is the accumulation of fat in the liver, affecting about 25% of the world population. Steatosis can cause lipo-toxicity and eventually lead to fibrosis, cirrhosis and ultimately liver failure if timely interventions are not provided. So, early diagnosis and disease monitoring of steatosis is crucial to reduce morbidity and mortality. Chemical shift based Magnetic Resonance Imaging (MRI) techniques using single and dual R2* (transverse relaxation rate) models have been reported to quantify fat fraction (FF) for assessment of steatosis. However, there is no common consensus between these two models and current data is limited for which model is accurate to quantify FF. Fully characterizing the behavior of the models over the entire clinical range of hepatic steatosis is essential to determine the limits of each of the models. However, performing a systematic investigation of the R2* models in patient population is infeasible. This thesis presents a computational approach by building a Monte Carlo based model as an alternative way to examine the R2*-MRI models. A 3D liver volume with impenetrable fat spheres was simulated to mimic hepatic steatosis. The simulation of steatosis was done using realistic data obtained from automatic segmentation and characterization of fat droplets using liver biopsy images. MRI signals were synthesized in the virtual liver volume using Monte Carlo modeling approach. Finally, the R2* behavior was analyzed using both the single and dual R2* models and they were compared against in-vivo calibration to determine their accuracy. Predicted R2* values were within confidence bounds of the published in vivo calibration and single R2* model showed higher accuracy than dual R2* model to estimate FF. In conclusion, this research developed a computational framework for creating realistic hepatic steatosis model and synthesizing MRI signal and analyzing R2* behavior in the presence of fat. The developed computational methods will also be generalizable to create other tissue-specific models and study R2* behavior at higher field strengths, for testing new MRI pulse sequences and in presence of other co-existing pathologies such as hepatic iron overload. .


MRI of Short and Ultrashort-T_2 Tissues

MRI of Short and Ultrashort-T_2 Tissues

Author: Jiang Du

Publisher: Springer Nature

Published: 2023

Total Pages: 612

ISBN-13: 3031351975

DOWNLOAD EBOOK

Zusammenfassung: This book comprehensively covers ultrashort echo time (UTE), zero echo time (ZTE), and other magnetic resonance imaging (MRI) acquisition techniques for imaging of short and ultrashort-T2 tissues. MRI uses a large magnet and radio waves to generate images of tissues in the body. The MRI signal is characterized by two time constants, spin-lattice relaxation time (T1) which describes how fast the longitudinal magnetization recovers to its initial value after tipping to the transverse plane, and spin-spin relaxation time (T2) which describes how fast the transverse magnetization decays. Conventional MRI techniques have been developed to image and quantify tissues with relatively long T2s. However, the body also contains many tissues and tissue components such as cortical bone, menisci, ligaments, tendons, the osteochondral junction, calcified tissues, lung parenchyma, iron containing tissues, and myelin, which have short or ultrashort-T2s. These tissues are "invisible" with conventional MRI, and their MR and tissue properties are not measurable. UTE and ZTE type sequences resolve these challenges and make these tissues visible and quantifiable. This book first introduces the basic physics of conventional MRI as well as UTE and ZTE type MRI, including radiofrequency excitation, data acquisition, and image reconstruction. A series of contrast mechanisms are then introduced and these provide high resolution, high contrast imaging of short and ultrashort-T2 tissues. A series of quantitative UTE imaging techniques are described for measurement of MR tissue properties (proton density, T1, T2, T2*, T1p,magnetization transfer, susceptibility, perfusion and diffusion). Finally, clinical applications in the musculoskeletal, neurological, pulmonary and cardiovascular systems are described. This is an ideal guide for physicists and radiologists interested in learning more about the use of UTE and ZTE type techniques for MRI of short and ultrashort-T2 tissues


Fast Absolute Quantification of In Vivo Water and Fat Content with Magnetic Resonance Imaging

Fast Absolute Quantification of In Vivo Water and Fat Content with Magnetic Resonance Imaging

Author: Yifan Cui

Publisher:

Published: 2013

Total Pages: 154

ISBN-13:

DOWNLOAD EBOOK

Quantitative water fat imaging offers a non-invasive method for monitoring and staging diseases associated with changes in either water or fat content in tissue. In this work absolute water and fat mass density measurement with in vivo Magnetic Resonance Imaging (MRI) is demonstrated. T1 independent, T2* corrected chemical shift based water-fat separated images are acquired. By placing a phantom with known mass density in the field of view for signal intensity calibration, absolute water or fat mass density can be computed, assuming the B1+ (transmit) and B1- (receive) fields can be measured. Phantom experiments with known water fat concentration were conducted to validate the feasibility of proposed method and in vivo data was collected from healthy volunteers. Results show good agreement with known values of in vivo water density. Each measurement was within one breath hold. Fast absolute quantification of water and fat with MRI is feasible in the abdomen.


MRI Fat Quantification a Phase Sweep B-SSFP Approach

MRI Fat Quantification a Phase Sweep B-SSFP Approach

Author: Sarah Larmour

Publisher:

Published: 2015

Total Pages: 93

ISBN-13:

DOWNLOAD EBOOK

Fats are a fundamental building block of the human body, but accumulation of unwanted fat in and around tissues is a common pathology related to many disease mechanisms. Magnetic Resonance Imaging (MRI) offers a host of methods to differentiate water and fat signals in images or spectra, for both high fat content visceral and adipose fat, and the lower concentration intra-cellular fat pools. Accurate quantitative measurements of small fat concentrations and small changes in fat concentration within the heart and liver would enable the early detection of disease, evaluation of disease progression, and assessment of the effectiveness of prescribed treatments. Current methods, such as Dixon fat-water methods, have poor performance at low fat-fraction (FF), while 1H Nuclear Magnetic Resonance (NMR) spectroscopy methods are difficult to apply in the heart, and are not widely available. The goals of this thesis were primarily to develop and validate a new method called Phase Sweep b-SSFP for the simultaneous quantification of FF, water T1 and T2, and off-resonance frequency using multiple b-SSFP images with incremented radio frequency (RF) pulse phase (Phase Sweep b-SSFP), and secondly to characterize the effects of fat on commonly used T1 mapping sequences and evaluate a new method for quantitative FF imaging, based on the modulation of T1 values by the fat pool. For the purpose of validation of these methods, the proposed work on fat quantification addressed accuracy and precision for the case of small concentrations of fat in the 0 - 10% range. Methods included numerical simulations, phantom experiments and application in skeletal muscle for validation. This range reflects the intended future clinical application of the techniques in the heart, kidney and liver to provide early diagnosis of disease and assessment of prescribed treatment effectiveness. Skeletal muscle provides a good surrogate for the diffuse and heterogeneous fat deposits found in the heart, kidney and liver while allowing us to develop methods without the added complication of excessive movement and need for free breathing pulse sequences. The results of this work show that 1) by using the proposed Phase Sweep b-SSFP method it is feasible to acquire quantitative results for FF, water T1 and T2 and off-resonance frequency, for which the variability in each parameter is largely independent of all other parameters and 2) low FF in tissues result in relatively large negative or positive shifts in native tissue T1 measured with MOLLI and SASHA T1 mapping methods as a function of off-resonance frequency, and that these resulting T1 shifts can be used to accurately quantify FF.


Towards Accurate Automated MRI Based R2* Measurements of Hepatic Iron Content

Towards Accurate Automated MRI Based R2* Measurements of Hepatic Iron Content

Author: Aaryani Sajja

Publisher:

Published: 2017

Total Pages:

ISBN-13:

DOWNLOAD EBOOK

Hepatic iron overload is a severe complication in patients receiving chronic blood transfusions for sickle cell disease, beta-thalassemia, and myelosuppression during chemotherapy. Accurate assessment of hepatic iron content (HIC) is thus paramount to quantify excessive iron accumulation and to monitor response to iron removal treatment. Needle biopsies are considered the reference standard to measure HIC. Magnetic resonance imaging (MRI) methods based on the effective transverse relaxation rate (R2*) have become a noninvasive alternative to measure HIC. R2* estimation typically involves 3 major steps - acquiring multiecho gradient echo (GRE) images of the liver under breath-hold, fitting a mono-exponential signal model to quantify R2*, and manually excluding the blood vessels from liver tissue via T2*-thresholding to estimate mean liver R2*. However, there are challenges such as respiratory motion, presence of fat, and manual extraction of liver parenchyma that affect each of these steps respectively, and eventually affect the accuracy, precision, and clinical workflow of R2*/HIC measurements. This dissertation addresses these challenges by evaluating a radial free-breathing multiecho ultra-short echo time (UTE) acquisition technique, a signal model based on Auto regressive moving average (ARMA) modeling that incorporates fat-water separation and R2* quantification, and an automated vessel exclusion technique for extraction of liver parenchyma to provide accurate automated methods for MRI based R2* measurements for the assessment of hepatic iron overload.


Pediatric Body MRI

Pediatric Body MRI

Author: Edward Y. Lee

Publisher: Springer Nature

Published: 2020-05-23

Total Pages: 500

ISBN-13: 303031989X

DOWNLOAD EBOOK

This book is a unique, authoritative and clinically oriented text on pediatric body MRI. It is your one-step reference for current information on pediatric body MRI addressing all aspects of congenital and acquired disorders. The easy-to-navigate text is divided into 17 chapters. Each chapter is organized to comprehensively cover the latest MRI techniques, fundamental embryology and anatomy, normal development and anatomic variants, key clinical presentation, characteristic imaging findings with MRI focus, differential diagnosis and pitfalls, as well as up-to-date management and treatment. Written by internationally known pediatric radiology experts and editorial team lead by acclaimed author, Edward Y. Lee, MD, MPH, this book is an ideal guide for practicing radiologists, radiology trainees, MRI technologists as well as clinicians in other specialties who are interested in pediatric body MRI.


Handbook of MRI Pulse Sequences

Handbook of MRI Pulse Sequences

Author: Matt A. Bernstein

Publisher: Elsevier

Published: 2004-09-21

Total Pages: 1041

ISBN-13: 0080533124

DOWNLOAD EBOOK

Magnetic Resonance Imaging (MRI) is among the most important medical imaging techniques available today. There is an installed base of approximately 15,000 MRI scanners worldwide. Each of these scanners is capable of running many different "pulse sequences", which are governed by physics and engineering principles, and implemented by software programs that control the MRI hardware. To utilize an MRI scanner to the fullest extent, a conceptual understanding of its pulse sequences is crucial. Handbook of MRI Pulse Sequences offers a complete guide that can help the scientists, engineers, clinicians, and technologists in the field of MRI understand and better employ their scanner. Explains pulse sequences, their components, and the associated image reconstruction methods commonly used in MRI Provides self-contained sections for individual techniques Can be used as a quick reference guide or as a resource for deeper study Includes both non-mathematical and mathematical descriptions Contains numerous figures, tables, references, and worked example problems