Fractured Fractals and Broken Dreams

Fractured Fractals and Broken Dreams

Author: Guy David

Publisher: Oxford University Press

Published: 1997

Total Pages: 226

ISBN-13: 9780198501664

DOWNLOAD EBOOK

This book proposes new notions of coherent geometric structure. Fractal patterns have emerged in many contexts, but what exactly is a "pattern" and what is not? How can one make precise the structures lying within objects and the relationships between them? The foundations laid herein provide a fresh approach to a familiar field. From this emerges a wide range of open problems, large and small, and a variety of examples with diverse connections to other parts of mathematics. One of the main features of the present text is that the basic framework is completely new. This makes it easier for people to get into the field. There are many open problems, with plenty of opportunities that are likely to be close at hand, particularly as concerns the exploration of examples. On the other hand the general framework is quite broad and provides the possibility for future discoveries of some magnitude. Fractual geometries can arise in many different ways mathematically, but there is not so much general language for making comparisons. This book provides some tools for doing this, and a place where researchers in different areas can find common ground and basic information.


Fractal Worlds

Fractal Worlds

Author: Michael Frame

Publisher: Yale University Press

Published: 2016-01-01

Total Pages: 536

ISBN-13: 030019787X

DOWNLOAD EBOOK

In this essential primer, mathematician Michael Frame, a close collaborator with Benoit Mandelbrot, the founder of fractal geometry, and poet Amelia Urry explore the amazing world of fractals as they appear in nature, art, medicine, and technology


Fractal Geometry

Fractal Geometry

Author: Kenneth Falconer

Publisher: John Wiley & Sons

Published: 2014-02-03

Total Pages: 404

ISBN-13: 111994239X

DOWNLOAD EBOOK

The seminal text on fractal geometry for students and researchers: extensively revised and updated with new material, notes and references that reflect recent directions. Interest in fractal geometry continues to grow rapidly, both as a subject that is fascinating in its own right and as a concept that is central to many areas of mathematics, science and scientific research. Since its initial publication in 1990 Fractal Geometry: Mathematical Foundations and Applications has become a seminal text on the mathematics of fractals. The book introduces and develops the general theory and applications of fractals in a way that is accessible to students and researchers from a wide range of disciplines. Fractal Geometry: Mathematical Foundations and Applications is an excellent course book for undergraduate and graduate students studying fractal geometry, with suggestions for material appropriate for a first course indicated. The book also provides an invaluable foundation and reference for researchers who encounter fractals not only in mathematics but also in other areas across physics, engineering and the applied sciences. Provides a comprehensive and accessible introduction to the mathematical theory and applications of fractals Carefully explains each topic using illustrative examples and diagrams Includes the necessary mathematical background material, along with notes and references to enable the reader to pursue individual topics Features a wide range of exercises, enabling readers to consolidate their understanding Supported by a website with solutions to exercises and additional material www.wileyeurope.com/fractal Leads onto the more advanced sequel Techniques in Fractal Geometry (also by Kenneth Falconer and available from Wiley)


Fractal Analysis: Basic Concepts And Applications

Fractal Analysis: Basic Concepts And Applications

Author: Carlo Cattani

Publisher: World Scientific

Published: 2022-02-24

Total Pages: 244

ISBN-13: 9811239452

DOWNLOAD EBOOK

The aim of this book is to provide a basic and self-contained introduction to the ideas underpinning fractal analysis. The book illustrates some important applications issued from real data sets, real physical and natural phenomena as well as real applications in different fields, and consequently, presents to the readers the opportunity to implement fractal analysis in their specialties according to the step-by-step guide found in the book.Besides advanced undergraduate students, graduate students and senior researchers, this book may also serve scientists and research workers from industrial settings, where fractals and multifractals are required for modeling real-world phenomena and data, such as finance, medicine, engineering, transport, images, signals, among others.For the theorists, rigorous mathematical developments are established with necessary prerequisites that make the book self-containing. For the practitioner often interested in model building and analysis, we provide the cornerstone ideas.


Fractal Zeta Functions and Fractal Drums

Fractal Zeta Functions and Fractal Drums

Author: Michel L. Lapidus

Publisher: Springer

Published: 2017-06-07

Total Pages: 685

ISBN-13: 3319447068

DOWNLOAD EBOOK

This monograph gives a state-of-the-art and accessible treatment of a new general higher-dimensional theory of complex dimensions, valid for arbitrary bounded subsets of Euclidean spaces, as well as for their natural generalization, relative fractal drums. It provides a significant extension of the existing theory of zeta functions for fractal strings to fractal sets and arbitrary bounded sets in Euclidean spaces of any dimension. Two new classes of fractal zeta functions are introduced, namely, the distance and tube zeta functions of bounded sets, and their key properties are investigated. The theory is developed step-by-step at a slow pace, and every step is well motivated by numerous examples, historical remarks and comments, relating the objects under investigation to other concepts. Special emphasis is placed on the study of complex dimensions of bounded sets and their connections with the notions of Minkowski content and Minkowski measurability, as well as on fractal tube formulas. It is shown for the first time that essential singularities of fractal zeta functions can naturally emerge for various classes of fractal sets and have a significant geometric effect. The theory developed in this book leads naturally to a new definition of fractality, expressed in terms of the existence of underlying geometric oscillations or, equivalently, in terms of the existence of nonreal complex dimensions. The connections to previous extensive work of the first author and his collaborators on geometric zeta functions of fractal strings are clearly explained. Many concepts are discussed for the first time, making the book a rich source of new thoughts and ideas to be developed further. The book contains a large number of open problems and describes many possible directions for further research. The beginning chapters may be used as a part of a course on fractal geometry. The primary readership is aimed at graduate students and researchers working in Fractal Geometry and other related fields, such as Complex Analysis, Dynamical Systems, Geometric Measure Theory, Harmonic Analysis, Mathematical Physics, Analytic Number Theory and the Spectral Theory of Elliptic Differential Operators. The book should be accessible to nonexperts and newcomers to the field.


Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics: Fractals in pure mathematics

Fractal Geometry and Dynamical Systems in Pure and Applied Mathematics: Fractals in pure mathematics

Author: David Carfi

Publisher: American Mathematical Soc.

Published: 2013-10-22

Total Pages: 410

ISBN-13: 0821891472

DOWNLOAD EBOOK

This volume contains the proceedings from three conferences: the PISRS 2011 International Conference on Analysis, Fractal Geometry, Dynamical Systems and Economics, held November 8-12, 2011 in Messina, Italy; the AMS Special Session on Fractal Geometry in Pure and Applied Mathematics, in memory of Benoit Mandelbrot, held January 4-7, 2012, in Boston, MA; and the AMS Special Session on Geometry and Analysis on Fractal Spaces, held March 3-4, 2012, in Honolulu, HI. Articles in this volume cover fractal geometry (and some aspects of dynamical systems) in pure mathematics. Also included are articles discussing a variety of connections of fractal geometry with other fields of mathematics, including probability theory, number theory, geometric measure theory, partial differential equations, global analysis on non-smooth spaces, harmonic analysis and spectral geometry. The companion volume (Contemporary Mathematics, Volume 601) focuses on applications of fractal geometry and dynamical systems to other sciences, including physics, engineering, computer science, economics, and finance.


Some Novel Types of Fractal Geometry

Some Novel Types of Fractal Geometry

Author: Stephen Semmes

Publisher: Oxford University Press

Published: 2001

Total Pages: 180

ISBN-13: 9780198508069

DOWNLOAD EBOOK

This book deals with fractal geometries that have features similar to ones of ordinary Euclidean spaces, while at the same time being quite different from Euclidean spaces.. A basic example of this feature considered is the presence of Sobolev or Poincaré inequalities, concerning the relationship between the average behavior of a function and the average behavior of its small-scale oscillations. Remarkable results in the last few years through Bourdon-Pajot and Laakso have shown that there is much more in the way of geometries like this than have been realized, only examples related to nilpotent Lie groups and Carnot metrics were known previously. On the other had, 'typical' fractals that might be seen in pictures do not have these same kinds of features. This text examines these topics in detail and will interest graduate students as well as researchers in mathematics and various aspects of geometry and analysis.


Topics In Mathematical Analysis

Topics In Mathematical Analysis

Author: Paolo Ciatti

Publisher: World Scientific

Published: 2008-06-16

Total Pages: 460

ISBN-13: 9814471356

DOWNLOAD EBOOK

This volume consists of a series of lecture notes on mathematical analysis. The contributors have been selected on the basis of both their outstanding scientific level and their clarity of exposition. Thus, the present collection is particularly suited to young researchers and graduate students. Through this volume, the editors intend to provide the reader with material otherwise difficult to find and written in a manner which is also accessible to nonexperts.


Issues in General and Specialized Mathematics Research: 2013 Edition

Issues in General and Specialized Mathematics Research: 2013 Edition

Author:

Publisher: ScholarlyEditions

Published: 2013-05-01

Total Pages: 1182

ISBN-13: 1490109544

DOWNLOAD EBOOK

Issues in General and Specialized Mathematics Research: 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about General Mathematics. The editors have built Issues in General and Specialized Mathematics Research: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about General Mathematics in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in General and Specialized Mathematics Research: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.