The Initiation, Propagation, and Arrest of Joints and Other Fractures

The Initiation, Propagation, and Arrest of Joints and Other Fractures

Author: John W. Cosgrove

Publisher: Geological Society of London

Published: 2004

Total Pages: 340

ISBN-13: 9781862391659

DOWNLOAD EBOOK

This volume is a state of the art look at our understanding of joint development in the crust. Answers are provided for such questions as the mechanisms by which joints are initiated, the factors controlling the path they follow during the propagation process, and the processes responsible for the arrest of joints. Many of the answers to these questions can be inferred from the geometry of joint surface morphology and joint patterns. Joints are a record of the orientation of stress at the time of propagation and as such they are also useful records of ancient stress fields, regional and local. Because outcrop and subsurface views of joints are limited, statistical techniques are required to characterize joints and joint sets. Finally, joints are subject to post-propagation stresses that further localize deformation and are the focus for the development of new structures.


Ductile Fracture Initiation, Propagation, and Arrest in Cylindrical Vessels

Ductile Fracture Initiation, Propagation, and Arrest in Cylindrical Vessels

Author: WA. Maxey

Publisher:

Published: 1972

Total Pages: 12

ISBN-13:

DOWNLOAD EBOOK

Presented is a discussion of an hypothesized analytical explanation of ductile fracture initiation, propagation, and arrest in cylindrical pressure vessels and piping. The hypothesized analytical treatment is an attempt to predict initiation and arrest conditions for ductile fractures using Charpy V-notch plateau energy as a means of determining the toughness of the material. Data from a number of full-scale experiments on gas transmission pipe, nuclear reactor piping, and other cylindrical vessels are presented and are shown to be in agreement with the hypothesis.


Mechanics of Fracture Initiation and Propagation

Mechanics of Fracture Initiation and Propagation

Author: George C. Sih

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 429

ISBN-13: 940113734X

DOWNLOAD EBOOK

The assessment of crack initiation and/or propagation has been the subject of many past discussions on fracture mechanics. Depending on how the chosen failure criterion is combined with the solution of a particular theory of continuum mechanics, the outcome could vary over a wide range. Mod elling of the material damage process could be elusive if the scale level of observation is left undefined. The specification of physical dimension alone is not sufficient because time and temperature also play an intimate role. It is only when the latter two variables are fixed that failure predictions can be simplified. The sudden fracture of material with a pre-existing crack is a case in point. Barring changes in the local temperature,* the energy released to create a unit surface area of an existing crack can be obtained by considering the change in elastic energy of the system before and after crack extension. Such a quantity has been referred to as the critical energy release rate, G e, or stress intensity factor, K Ie. Other parameters, such as the crack opening displacement (COD), path-independent J-integral, etc. , have been proposed; their relation to the fracture process is also based on the energy release concept. These one-parameter approaches, however, are unable simultaneously to account for the failure process of crack initiation, propagation and onset of rapid fracture. A review on the use of G, K I, COD, J, etc. , has been made by Sih [1,2].


Crack Arrest Concepts for Failure Prevention and Life Extension

Crack Arrest Concepts for Failure Prevention and Life Extension

Author: Gyoujin Cho

Publisher: Woodhead Publishing

Published: 1996-04-30

Total Pages: 334

ISBN-13: 9781855732643

DOWNLOAD EBOOK

The proceedings of a seminar held at TWI in September, 1995, focusing on crack arrest philosophy which aknowledges that a brittle crack is arrested when it emerges from the critical region. Papers from prestigious researchers presented a critique and assessment of the theory and its application under: Introduction to crack arrest concepts; Recent trends in crack arrest research; Application of crack arrest concepts.


Dynamic Fracture Mechanics

Dynamic Fracture Mechanics

Author: Arun Shukla

Publisher: World Scientific

Published: 2006

Total Pages: 374

ISBN-13: 9812773320

DOWNLOAD EBOOK

Covering a wide variety of topics in dynamic fracture mechanics, this volume presents state-of-the-art experimental techniques and theoretical analysis on dynamic fracture in standard and exotic materials. Written by world renowned researchers, this valuable compendium contains eleven chapters on crack initiation, crack propagation, crack arrest, crack-stress wave interactions, and experimental, analytical and numerical methods in dynamic fracture mechanics. Contents: Modeling Dynamic Fracture Using Large-Scale Atomistic Simulations (H-J Gao & M J Buehler); Dynamic Crack Initiation Toughness (D Rittel); The Dynamics of Rapidly Moving Tensile Cracks in Brittle Amorphous Material (J Fineberg); Optical Methods for Dynamic Fracture Mechanics (H V Tippur); On the Use of Strain Gages in Dynamic Fracture (V Parameswaran & A Shukla); Dynamic and Crack Arrest Fracture Toughness (R E Link & R Chona); Dynamic Fracture in Graded Materials (A Shukla & N Jain); Dynamic Fracture Initiation Toughness at Elevated Temperatures with Application to the New Generation of Titanium Aluminides Alloys (M Shazly et al.); Dynamic Fracture of Nanocomposite Materials (A Shukla et al.). Readership: Researchers, practitioners, and graduate students in fracture mechanics and materials science.