Fracture and Fatigue Control in Structures

Fracture and Fatigue Control in Structures

Author: Stanley Theodore Rolfe

Publisher: ASTM International

Published: 1977

Total Pages: 527

ISBN-13:

DOWNLOAD EBOOK

Emphasizes applications of fracture mechanics to prevent fracture and fatigue failures in structures, rather than the theoretical aspects of fracture mechanics. The concepts of driving force and resistance force are used to differentiate between the mathematical side and the materials side. Case studies of actual failures are new to the third edition. Annotation copyrighted by Book News, Inc., Portland, OR


Fracture and Fatigue Control in Structures

Fracture and Fatigue Control in Structures

Author: John M. Barsom

Publisher:

Published: 1999

Total Pages: 0

ISBN-13: 9780803145412

DOWNLOAD EBOOK

Annotation An introduction for practicing engineers or students at the beginning graduate or advanced undergraduate level, emphasizing the application of fracture mechanics to preventing fracture and fatigue failures in structures, rather than the theoretical aspects of the field. The topics include stress analysis for members with cracks, resistance forces, fatigue crack initiation, and fitness for service. Among the case studies are bridges, oil tankers, and steel casings. The earlier editions were in 1977 and 1987. Annotation copyrighted by Book News, Inc., Portland, OR.


Damage and Fracture Mechanics

Damage and Fracture Mechanics

Author: Taoufik Boukharouba

Publisher: Springer Science & Business Media

Published: 2009-08-09

Total Pages: 616

ISBN-13: 904812669X

DOWNLOAD EBOOK

The First African InterQuadrennial ICF Conference “AIQ-ICF2008” on Damage and Fracture Mechanics – Failure Analysis of Engineering Materials and Structures”, Algiers, Algeria, June 1–5, 2008 is the first in the series of InterQuadrennial Conferences on Fracture to be held in the continent of Africa. During the conference, African researchers have shown that they merit a strong reputation in international circles and continue to make substantial contributions to the field of fracture mechanics. As in most countries, the research effort in Africa is und- taken at the industrial, academic, private sector and governmental levels, and covers the whole spectrum of fracture and fatigue. The AIQ-ICF2008 has brought together researchers and engineers to review and discuss advances in the development of methods and approaches on Damage and Fracture Mechanics. By bringing together the leading international experts in the field, AIQ-ICF promotes technology transfer and provides a forum for industry and researchers of the host nation to present their accomplishments and to develop new ideas at the highest level. International Conferences have an important role to play in the technology transfer process, especially in terms of the relationships to be established between the participants and the informal exchange of ideas that this ICF offers.


Ultimate Limit State Analysis and Design of Plated Structures

Ultimate Limit State Analysis and Design of Plated Structures

Author: Jeom Kee Paik

Publisher: John Wiley & Sons

Published: 2018-03-02

Total Pages: 971

ISBN-13: 1119367786

DOWNLOAD EBOOK

Reviews and describes both the fundamental and practical design procedures for the ultimate limit state design of ductile steel plated structures The new edition of this well-established reference reviews and describes both fundamentals and practical design procedures for steel plated structures. The derivation of the basic mathematical expressions is presented together with a thorough discussion of the assumptions and the validity of the underlying expressions and solution methods. Furthermore, this book is also an easily accessed design tool, which facilitates learning by applying the concepts of the limit states for practice using a set of computer programs, which can be downloaded. Ultimate Limit State Design of Steel Plated Structures provides expert guidance on mechanical model test results as well as nonlinear finite element solutions, sophisticated design methodologies useful for practitioners in industries or research institutions, and selected methods for accurate and efficient analyses of nonlinear behavior of steel plated structures both up to and after the ultimate strength is reached. Covers recent advances and developments in the field Includes new topics on constitutive equations of steels, test database associated with low/elevated temperature, and strain rates Includes a new chapter on a semi-analytical method Supported by a companion website with illustrative example data sheets Provides results for existing mechanical model tests Offers a thorough discussion of assumptions and the validity of underlying expressions and solution methods Designed as both a textbook and a handy reference, Ultimate Limit State Design of Steel Plated Structures, Second Edition is well suited to teachers and university students who are approaching the limit state design technology of steel plated structures for the first time. It also meets the needs of structural designers or researchers who are involved in civil, marine, and mechanical engineering as well as offshore engineering and naval architecture.


Introduction to Fracture Mechanics

Introduction to Fracture Mechanics

Author: Robert O. Ritchie

Publisher: Elsevier

Published: 2021-06-23

Total Pages: 168

ISBN-13: 032389822X

DOWNLOAD EBOOK

Introduction to Fracture Mechanics presents an introduction to the origins, formulation and application of fracture mechanics for the design, safe operation and life prediction in structural materials and components. The book introduces and informs the reader on how fracture mechanics works and how it is so different from other forms of analysis that are used to characterize mechanical properties. Chapters cover foundational topics and the use of linear-elastic fracture mechanics, involving both K-based characterizing parameter and G-based energy approaches, and how to characterize the fracture toughness of materials under plane-strain and non plane-strain conditions using the notion of crack-resistance or R-curves. Other sections cover far more complex nonlinear-elastic fracture mechanics based on the use of the J-integral and the crack-tip opening displacement. These topics largely involve continuum mechanics descriptions of crack initiation, slow crack growth, eventual instability by overload fracture, and subcritical cracking. Presents how, for a given material, a fracture toughness value can be measured on a small laboratory sample and then used directly to predict the failure (by fracture, fatigue, creep, etc.) of a much larger structure in service Covers the rudiments of fracture mechanics from the perspective of the philosophy underlying the few principles and the many assumptions that form the basis of the discipline Provides readers with a "working knowledge" of fracture mechanics, describing its potency for damage-tolerant design, for preventing failures through appropriate life-prediction strategies, and for quantitative failure analysis (fracture diagnostics)


Proceedings of the 9th International Conference on Fracture, Fatigue and Wear

Proceedings of the 9th International Conference on Fracture, Fatigue and Wear

Author: Magd Abdel Wahab

Publisher: Springer Nature

Published: 2022-03-11

Total Pages: 315

ISBN-13: 9811688109

DOWNLOAD EBOOK

This proceedings gather a selection of peer-reviewed papers presented at the 9th International Conference on Fracture Fatigue and Wear (FFW 2021), held in the city of Ghent, Belgium on 2–3 August 2021. The contributions, prepared by international scientists and engineers, cover the latest advances in and innovative applications of fracture mechanics, fatigue of materials, tribology, and wear of materials. In addition, they discuss industrial applications and cover theoretical and analytical methods, numerical simulations and experimental techniques. The book is intended for academics, including graduate students and researchers, as well as industrial practitioners working in the areas of fracture fatigue and wear.


Fracture mechanics of concrete: Structural application and numerical calculation

Fracture mechanics of concrete: Structural application and numerical calculation

Author: George C. Sih

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 289

ISBN-13: 9400961529

DOWNLOAD EBOOK

Concrete has traditionally been known as a material used widely in the construction of roads, bridges and buildings. Since cost effectiveness has always been one of the more important aspects of design, concrete, when reinforced and/or prestressed, is finding more use in other areas of application such as floating marine structures, storage tanks, nuclear vessel containments and a host of other structures. Because of the demand for concrete to operate under different loading and environmen tal conditions, increasing attention has been paid to study concrete specimens and structure behavior. A subject of major concern is how the localized segregation of the constituents in concrete would affect its global behavior. The degree of nonhomogeneity due to material property and damage. by yielding and/or cracking depends on the size scale and loading rate under consideration. Segregation or clustering of aggregates at the macroscopic level will affect specimen behavior to a larger degree than it would to a large structure such as a dam. Hence, a knowledge of concrete behavior over a wide range of scale is desired. The parameters governing micro-and macro-cracking and the techniques for evaluating and observing the damage in concrete need to be better understood. This volume is intended to be an attempt in this direction. The application of Linear Elastic Fracture Mechanics to concrete is discussed in several of the chapters.