A deeply detailed discussion of fractals in biology, heterogeneous chemistry, polymers, and the earth sciences. Beginning with a general introduction to fractal geometry it continues with eight chapters on self-organized criticality, rough surfaces and interfaces, random walks, chemical reactions, and fractals in chemisty, biology, and medicine. A special chapter entitled "Computer Exploration of Fractals, Chaos, and Cooperativity" presents computer demonstrations of fractal models: 14 programs are included on a 3 1/2" MS-DOS diskette which run on any PC with at least 1 MB RAM and a EGA or VGA graphics card, 16 colors.
This book is based on notes for the course Fractals:lntroduction, Basics and Perspectives given by MichaelF. Barnsley, RobertL. Devaney, Heinz-Otto Peit gen, Dietmar Saupe and Richard F. Voss. The course was chaired by Heinz-Otto Peitgen and was part of the SIGGRAPH '87 (Anaheim, California) course pro gram. Though the five chapters of this book have emerged from those courses we have tried to make this book a coherent and uniformly styled presentation as much as possible. It is the first book which discusses fractals solely from the point of view of computer graphics. Though fundamental concepts and algo rithms are not introduced and discussed in mathematical rigor we have made a serious attempt to justify and motivate wherever it appeared to be desirable. Ba sic algorithms are typically presented in pseudo-code or a description so close to code that a reader who is familiar with elementary computer graphics should find no problem to get started. Mandelbrot's fractal geometry provides both a description and a mathemat ical model for many of the seemingly complex forms and patterns in nature and the sciences. Fractals have blossomed enormously in the past few years and have helped reconnect pure mathematics research with both natural sciences and computing. Computer graphics has played an essential role both in its de velopment and rapidly growing popularity. Conversely, fractal geometry now plays an important role in the rendering, modelling and animation of natural phenomena and fantastic shapes in computer graphics.
For almost ten years chaos and fractals have been enveloping many areas of mathematics and the natural sciences in their power, creativity and expanse. Reaching far beyond the traditional bounds of mathematics and science to the realms of popular culture, they have captured the attention and enthusiasm of a worldwide audience. The fourteen chapters of the book cover the central ideas and concepts, as well as many related topics including, the Mandelbrot Set, Julia Sets, Cellular Automata, L-Systems, Percolation and Strange Attractors, and each closes with the computer code for a central experiment. In the two appendices, Yuval Fisher discusses the details and ideas of fractal image compression, while Carl J.G. Evertsz and Benoit Mandelbrot introduce the foundations and implications of multifractals.
Fractals: A User's Guide for the Natural Sciences explains Mandelbrot's fractal geometry and describes some of its applications in the natural world. Written to enable students and researchers to master the methods of this timely subject, the book steers a middle course between the formality of many papers in mathematics and the informality of picture-orientated books on fractals. It is both a logically developed text and an essential `fractals for users' handbook.
In March 2000 leading scientists gathered at the Centro Seminariale Monte Verità, Ascona, Switzerland, for the Third International Symposium on "Fractals 2000 in Biology and Medicine". This interdisciplinary conference provided stimulating contributions from the very topical field Fractals in Biology and Medicine. This volume highlights the growing power and efficacy of the fractal geometry in understanding how to analyze living phenomena and complex shapes.
These days computer-generated fractal patterns are everywhere, from squiggly designs on computer art posters to illustrations in the most serious of physics journals. Interest continues to grow among scientists and, rather surprisingly, artists and designers. This book provides visual demonstrations of complicated and beautiful structures that can arise in systems, based on simple rules. It also presents papers on seemingly paradoxical combinations of randomness and structure in systems of mathematical, physical, biological, electrical, chemical, and artistic interest. Topics include: iteration, cellular automata, bifurcation maps, fractals, dynamical systems, patterns of nature created through simple rules, and aesthetic graphics drawn from the universe of mathematics and art.Chaos and Fractals is divided into six parts: Geometry and Nature; Attractors; Cellular Automata, Gaskets, and Koch Curves; Mandelbrot, Julia and Other Complex Maps; Iterated Function Systems; and Computer Art.Additionally, information on the latest practical applications of fractals and on the use of fractals in commercial products such as the antennas and reaction vessels is presented. In short, fractals are increasingly finding application in practical products where computer graphics and simulations are integral to the design process. Each of the six sections has an introduction by the editor including the latest research, references, and updates in the field. This book is enhanced with numerous color illustrations, a comprehensive index, and the many computer program examples encourage reader involvement.
Ecologists sometimes have a less-than-rigorous background in quantitative methods, yet research within this broad field is becoming increasingly mathematical. Written in a step-by-step fashion, Fractals and Multifractals in Ecology and Aquatic Science provides scientists with a basic understanding of fractals and multifractals and the techniques fo