FPGA-Accelerated Simulation of Computer Systems

FPGA-Accelerated Simulation of Computer Systems

Author: Hari Angepat

Publisher: Morgan & Claypool Publishers

Published: 2014-07-01

Total Pages: 82

ISBN-13: 1627052143

DOWNLOAD EBOOK

To date, the most common form of simulators of computer systems are software-based running on standard computers. One promising approach to improve simulation performance is to apply hardware, specifically reconfigurable hardware in the form of field programmable gate arrays (FPGAs). This manuscript describes various approaches of using FPGAs to accelerate software-implemented simulation of computer systems and selected simulators that incorporate those techniques. More precisely, we describe a simulation architecture taxonomy that incorporates a simulation architecture specifically designed for FPGA accelerated simulation, survey the state-of-the-art in FPGA-accelerated simulation, and describe in detail selected instances of the described techniques. Table of Contents: Preface / Acknowledgments / Introduction / Simulator Background / Accelerating Computer System Simulators with FPGAs / Simulation Virtualization / Categorizing FPGA-based Simulators / Conclusion / Bibliography / Authors' Biographies


FPGA-Accelerated Simulation of Computer Systems

FPGA-Accelerated Simulation of Computer Systems

Author: Hari Angepat

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 64

ISBN-13: 3031017447

DOWNLOAD EBOOK

To date, the most common form of simulators of computer systems are software-based running on standard computers. One promising approach to improve simulation performance is to apply hardware, specifically reconfigurable hardware in the form of field programmable gate arrays (FPGAs). This manuscript describes various approaches of using FPGAs to accelerate software-implemented simulation of computer systems and selected simulators that incorporate those techniques. More precisely, we describe a simulation architecture taxonomy that incorporates a simulation architecture specifically designed for FPGA accelerated simulation, survey the state-of-the-art in FPGA-accelerated simulation, and describe in detail selected instances of the described techniques. Table of Contents: Preface / Acknowledgments / Introduction / Simulator Background / Accelerating Computer System Simulators with FPGAs / Simulation Virtualization / Categorizing FPGA-based Simulators / Conclusion / Bibliography / Authors' Biographies


High-Performance Computing Using FPGAs

High-Performance Computing Using FPGAs

Author: Wim Vanderbauwhede

Publisher: Springer Science & Business Media

Published: 2013-08-23

Total Pages: 798

ISBN-13: 1461417910

DOWNLOAD EBOOK

High-Performance Computing using FPGA covers the area of high performance reconfigurable computing (HPRC). This book provides an overview of architectures, tools and applications for High-Performance Reconfigurable Computing (HPRC). FPGAs offer very high I/O bandwidth and fine-grained, custom and flexible parallelism and with the ever-increasing computational needs coupled with the frequency/power wall, the increasing maturity and capabilities of FPGAs, and the advent of multicore processors which has caused the acceptance of parallel computational models. The Part on architectures will introduce different FPGA-based HPC platforms: attached co-processor HPRC architectures such as the CHREC’s Novo-G and EPCC’s Maxwell systems; tightly coupled HRPC architectures, e.g. the Convey hybrid-core computer; reconfigurably networked HPRC architectures, e.g. the QPACE system, and standalone HPRC architectures such as EPFL’s CONFETTI system. The Part on Tools will focus on high-level programming approaches for HPRC, with chapters on C-to-Gate tools (such as Impulse-C, AutoESL, Handel-C, MORA-C++); Graphical tools (MATLAB-Simulink, NI LabVIEW); Domain-specific languages, languages for heterogeneous computing(for example OpenCL, Microsoft’s Kiwi and Alchemy projects). The part on Applications will present case from several application domains where HPRC has been used successfully, such as Bioinformatics and Computational Biology; Financial Computing; Stencil computations; Information retrieval; Lattice QCD; Astrophysics simulations; Weather and climate modeling.


Quantum Computer Systems

Quantum Computer Systems

Author: Yongshan Ding

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 203

ISBN-13: 303101765X

DOWNLOAD EBOOK

This book targets computer scientists and engineers who are familiar with concepts in classical computer systems but are curious to learn the general architecture of quantum computing systems. It gives a concise presentation of this new paradigm of computing from a computer systems' point of view without assuming any background in quantum mechanics. As such, it is divided into two parts. The first part of the book provides a gentle overview on the fundamental principles of the quantum theory and their implications for computing. The second part is devoted to state-of-the-art research in designing practical quantum programs, building a scalable software systems stack, and controlling quantum hardware components. Most chapters end with a summary and an outlook for future directions. This book celebrates the remarkable progress that scientists across disciplines have made in the past decades and reveals what roles computer scientists and engineers can play to enable practical-scale quantum computing.


Robotic Computing on FPGAs

Robotic Computing on FPGAs

Author: Shaoshan Liu

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 202

ISBN-13: 3031017714

DOWNLOAD EBOOK

This book provides a thorough overview of the state-of-the-art field-programmable gate array (FPGA)-based robotic computing accelerator designs and summarizes their adopted optimized techniques. This book consists of ten chapters, delving into the details of how FPGAs have been utilized in robotic perception, localization, planning, and multi-robot collaboration tasks. In addition to individual robotic tasks, this book provides detailed descriptions of how FPGAs have been used in robotic products, including commercial autonomous vehicles and space exploration robots.


Creativity in Computing and DataFlow SuperComputing

Creativity in Computing and DataFlow SuperComputing

Author:

Publisher: Academic Press

Published: 2017-01-02

Total Pages: 240

ISBN-13: 012811956X

DOWNLOAD EBOOK

Creativity in Computing and DataFlow Supercomputing, the latest release in the Advances in Computers series published since 1960, presents detailed coverage of innovations in computer hardware, software, theory, design, and applications. In addition, it provides contributors with a medium in which they can explore topics in greater depth and breadth than journal articles typically allow. As a result, many articles have become standard references that continue to be of significant, lasting value in this rapidly expanding field. - Provides in-depth surveys and tutorials on new computer technology - Presents well-known authors and researchers in the field - Includes extensive bibliographies with most chapters - Contains extensive chapter coverage that is devoted to single themes or subfields of computer science


Embedded Computer Systems: Architectures, Modeling, and Simulation

Embedded Computer Systems: Architectures, Modeling, and Simulation

Author: Dionisios N. Pnevmatikatos

Publisher: Springer

Published: 2019-08-09

Total Pages: 486

ISBN-13: 3030275620

DOWNLOAD EBOOK

This book constitutes the refereed proceedings of the 19th International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, SAMOS 2019, held in Pythagorion, Samos, Greece, in July 2019. The 21 regular papers presented were carefully reviewed and selected from 55 submissions. The papers are organized in topical sections on system design space exploration; deep learning optimization; system security; multi/many-core scheduling; system energy and heat management; many-core communication; and electronic system-level design and verification. In addition there are 13 papers from three special sessions which were organized on topics of current interest: insights from negative results; machine learning implementations; and European projects.


Embedded Computer Systems: Architectures, Modeling, and Simulation

Embedded Computer Systems: Architectures, Modeling, and Simulation

Author: Alex Orailoglu

Publisher: Springer Nature

Published: 2022-04-26

Total Pages: 528

ISBN-13: 3031045807

DOWNLOAD EBOOK

This book constitutes the proceedings of the 21st International Conference on Embedded Computer Systems: Architectures, Modeling, and Simulation, SAMOS 2021, which took place in July 2021. Due to COVID-19 pandemic the conference was held virtually. The 17 full papers presented in this volume were carefully reviewed and selected from 45 submissions. The papers are organized in topics as follows: simulation and design space exploration; the 3Cs - Cache, Cluster and Cloud; heterogeneous SoC; novel CPU architectures and applications; dataflow; innovative architectures and tools for security; next generation computing; insights from negative results.


Handbook of Signal Processing Systems

Handbook of Signal Processing Systems

Author: Shuvra S. Bhattacharyya

Publisher: Springer Science & Business Media

Published: 2013-06-20

Total Pages: 1395

ISBN-13: 1461468590

DOWNLOAD EBOOK

Handbook of Signal Processing Systems is organized in three parts. The first part motivates representative applications that drive and apply state-of-the art methods for design and implementation of signal processing systems; the second part discusses architectures for implementing these applications; the third part focuses on compilers and simulation tools, describes models of computation and their associated design tools and methodologies. This handbook is an essential tool for professionals in many fields and researchers of all levels.


Customizable Computing

Customizable Computing

Author: Yu-Ting Chen

Publisher: Springer Nature

Published: 2022-05-31

Total Pages: 106

ISBN-13: 303101748X

DOWNLOAD EBOOK

Since the end of Dennard scaling in the early 2000s, improving the energy efficiency of computation has been the main concern of the research community and industry. The large energy efficiency gap between general-purpose processors and application-specific integrated circuits (ASICs) motivates the exploration of customizable architectures, where one can adapt the architecture to the workload. In this Synthesis lecture, we present an overview and introduction of the recent developments on energy-efficient customizable architectures, including customizable cores and accelerators, on-chip memory customization, and interconnect optimization. In addition to a discussion of the general techniques and classification of different approaches used in each area, we also highlight and illustrate some of the most successful design examples in each category and discuss their impact on performance and energy efficiency. We hope that this work captures the state-of-the-art research and development on customizable architectures and serves as a useful reference basis for further research, design, and implementation for large-scale deployment in future computing systems.