This is an essential book for students and academicians alike. In addition to discussing theory, topics include the connection between stresses and strains in an isotropic elastic body, the geometry of strain, and much more. Deductions are explained in the simplest, most intuitive manner for wide accessibility. 1953 edition.
The current trend of building more streamlined structures has made stability analysis a subject of extreme importance. It is mostly a safety issue because Stability loss could result in an unimaginable catastrophe. Written by two authors with a combined 80 years of professional and academic experience, the objective of Stability of Structures: Principles and Applications is to provide engineers and architects with a firm grasp of the fundamentals and principles that are essential to performing effective stability analysts. Concise and readable, this guide presents stability analysis within the context of elementary nonlinear flexural analysis, providing a strong foundation for incorporating theory into everyday practice. The first chapter introduces the buckling of columns. It begins with the linear elastic theory and proceeds to include the effects of large deformations and inelastic behavior. In Chapter 2 various approximate methods are illustrated along with the fundamentals of energy methods. The chapter concludes by introducing several special topics, some advanced, that are useful in understanding the physical resistance mechanisms and consistent and rigorous mathematical analysis. Chapters 3 and 4 cover buckling of beam-columns. Chapter 5 presents torsion in structures in some detail, which is one of the least well understood subjects in the entire spectrum of structural mechanics. Strictly speaking, torsion itself does not belong to a topic in structural stability, but needs to be covered to some extent for a better understanding of buckling accompanied with torsional behavior. Chapters 6 and 7 consider stability of framed structures in conjunction with torsional behavior of structures. Chapters 8 to 10 consider buckling of plate elements, cylindrical shells, and general shells. Although the book is primarily devoted to analysis, rudimentary design aspects are discussed. - Balanced presentation for both theory and practice - Well-blended contents covering elementary to advanced topics - Detailed presentation of the development
When, after the agreeable fatigues of solicitation, Mrs Millamant set out a long bill of conditions subject to which she might by degrees dwindle into a wife, Mirabell offered in return the condition that he might not thereby be beyond measure enlarged into a husband. With age and experience in research come the twin dangers of dwindling into a philosopher of science while being enlarged into a dotard. The philosophy of science, I believe, should not be the preserve of senile scientists and of teachers of philosophy who have themselves never so much as understood the contents of a textbook of theoretical physics, let alone done a bit of mathematical research or even enjoyed the confidence of a creating scientist. On the latter count I run no risk: Any reader will see that I am untrained (though not altogether unread) in classroom philosophy. Of no ignorance of mine do I boast, indeed I regret it, but neither do I find this one ignorance fatal here, for few indeed of the great philosophers to explicate whose works hodiernal professors of phil osophy destroy forests of pulp were themselves so broadly and specially trained as are their scholiasts. In attempt to palliate the former count I have chosen to collect works written over the past thirty years, some of them not published before, and I include only a few very recent essays.
This book is based on my experiences as a teacher and as a researcher for more than four decades. When I started teaching in the early 1950s, I became interested in the vibrations of plates and shells. Soon after I joined the Polytechnic Institute of Brooklyn as a professor, I began working busily on my research in vibrations of sandwich and layered plates and shells, and then teaching a graduate course on the same subject. Although I tried to put together my lecture notes into a book, I never finished it. Many years later, I came to the New Jersey Institute of Technology as the dean of engineering. When I went back to teaching and looked for some research areas to work on, I came upon laminated composites and piezoelectric layers, which appeared to be natural extensions of sandwiches. Working on these for the last several years has brought me a great deal of joy, since I still am able to find my work relevant. At least I can claim that I still am pursuing life-long learning as it is advocated by educators all over the country. This book is based on the research results I accumulated during these two periods of my work, the first on vibrations and dynamical model ing of sandwiches, and the second on laminated composites and piezoelec tric layers.
Three subjects of major interest in one textbook: linear elasticity, mechanics of structures in linear isotropic elasticity, and nonlinear mechanics including computational algorithms. After the simplest possible, intuitive approach there follows the mathematical formulation and analysis, with computational methods occupying a good portion of the book. There are several worked-out problems in each chapter and additional exercises at the end of the book, plus mathematical expressions are bery often given in more than one notation. The book is intended primarily for students and practising engineers in mechanical and civil engineering, although students and experts from applied mathematics, materials science and other related fields will also find it useful.