Foundations of the Classical Theory of Partial Differential Equations

Foundations of the Classical Theory of Partial Differential Equations

Author: Yu.V. Egorov

Publisher: Springer Science & Business Media

Published: 2013-12-01

Total Pages: 264

ISBN-13: 3642580939

DOWNLOAD EBOOK

From the reviews: "...I think the volume is a great success ... a welcome addition to the literature ..." The Mathematical Intelligencer, 1993 "... It is comparable in scope with the great Courant-Hilbert Methods of Mathematical Physics, but it is much shorter, more up to date of course, and contains more elaborate analytical machinery...." The Mathematical Gazette, 1993


Finite Difference Methods for Ordinary and Partial Differential Equations

Finite Difference Methods for Ordinary and Partial Differential Equations

Author: Randall J. LeVeque

Publisher: SIAM

Published: 2007-01-01

Total Pages: 356

ISBN-13: 9780898717839

DOWNLOAD EBOOK

This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.


Second Order Equations of Elliptic and Parabolic Type

Second Order Equations of Elliptic and Parabolic Type

Author: E. M. Landis

Publisher: American Mathematical Soc.

Published: 1997-12-02

Total Pages: 224

ISBN-13: 9780821897812

DOWNLOAD EBOOK

Most books on elliptic and parabolic equations emphasize existence and uniqueness of solutions. By contrast, this book focuses on the qualitative properties of solutions. In addition to the discussion of classical results for equations with smooth coefficients (Schauder estimates and the solvability of the Dirichlet problem for elliptic equations; the Dirichlet problem for the heat equation), the book describes properties of solutions to second order elliptic and parabolic equations with measurable coefficients near the boundary and at infinity. The book presents a fine elementary introduction to the theory of elliptic and parabolic equations of second order. The precise and clear exposition is suitable for graduate students as well as for research mathematicians who want to get acquainted with this area of the theory of partial differential equations.


Partial Differential Equations of Mathematical Physics

Partial Differential Equations of Mathematical Physics

Author: S. L. Sobolev

Publisher: Courier Corporation

Published: 1964-01-01

Total Pages: 452

ISBN-13: 9780486659640

DOWNLOAD EBOOK

This volume presents an unusually accessible introduction to equations fundamental to the investigation of waves, heat conduction, hydrodynamics, and other physical problems. Topics include derivation of fundamental equations, Riemann method, equation of heat conduction, theory of integral equations, Green's function, and much more. The only prerequisite is a familiarity with elementary analysis. 1964 edition.


Partial Differential Equations in Action

Partial Differential Equations in Action

Author: Sandro Salsa

Publisher: Springer

Published: 2015-04-24

Total Pages: 714

ISBN-13: 3319150936

DOWNLOAD EBOOK

The book is intended as an advanced undergraduate or first-year graduate course for students from various disciplines, including applied mathematics, physics and engineering. It has evolved from courses offered on partial differential equations (PDEs) over the last several years at the Politecnico di Milano. These courses had a twofold purpose: on the one hand, to teach students to appreciate the interplay between theory and modeling in problems arising in the applied sciences, and on the other to provide them with a solid theoretical background in numerical methods, such as finite elements. Accordingly, this textbook is divided into two parts. The first part, chapters 2 to 5, is more elementary in nature and focuses on developing and studying basic problems from the macro-areas of diffusion, propagation and transport, waves and vibrations. In turn the second part, chapters 6 to 11, concentrates on the development of Hilbert spaces methods for the variational formulation and the analysis of (mainly) linear boundary and initial-boundary value problems.


Partial Differential Equations with Numerical Methods

Partial Differential Equations with Numerical Methods

Author: Stig Larsson

Publisher: Springer Science & Business Media

Published: 2008-12-05

Total Pages: 263

ISBN-13: 3540887059

DOWNLOAD EBOOK

The main theme is the integration of the theory of linear PDE and the theory of finite difference and finite element methods. For each type of PDE, elliptic, parabolic, and hyperbolic, the text contains one chapter on the mathematical theory of the differential equation, followed by one chapter on finite difference methods and one on finite element methods. The chapters on elliptic equations are preceded by a chapter on the two-point boundary value problem for ordinary differential equations. Similarly, the chapters on time-dependent problems are preceded by a chapter on the initial-value problem for ordinary differential equations. There is also one chapter on the elliptic eigenvalue problem and eigenfunction expansion. The presentation does not presume a deep knowledge of mathematical and functional analysis. The required background on linear functional analysis and Sobolev spaces is reviewed in an appendix. The book is suitable for advanced undergraduate and beginning graduate students of applied mathematics and engineering.


Game Theory and Partial Differential Equations

Game Theory and Partial Differential Equations

Author: Pablo Blanc

Publisher: Walter de Gruyter GmbH & Co KG

Published: 2019-07-22

Total Pages: 256

ISBN-13: 3110619326

DOWNLOAD EBOOK

Extending the well-known connection between classical linear potential theory and probability theory (through the interplay between harmonic functions and martingales) to the nonlinear case of tug-of-war games and their related partial differential equations, this unique book collects several results in this direction and puts them in an elementary perspective in a lucid and self-contained fashion.


Partial Differential Equations IX

Partial Differential Equations IX

Author: M.S. Agranovich

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 287

ISBN-13: 3662067218

DOWNLOAD EBOOK

This EMS volume gives an overview of the modern theory of elliptic boundary value problems, with contributions focusing on differential elliptic boundary problems and their spectral properties, elliptic pseudodifferential operators, and general differential elliptic boundary value problems in domains with singularities.


COMPUTATIONAL MODELS - Volume I

COMPUTATIONAL MODELS - Volume I

Author: Shaidurov Vladimir Viktorovich

Publisher: EOLSS Publications

Published: 2009-04-10

Total Pages: 542

ISBN-13: 1848260350

DOWNLOAD EBOOK

Computational Models is a component of Encyclopedia of Mathematical Sciences in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. Modern Computational Mathematics arises in a wide variety of fields, including business, economics, engineering, finance, medicine and science. The Theme on Computational Models provides the essential aspects of Computational Mathematics emphasizing Basic Methods for Solving Equations; Numerical Analysis and Methods for Ordinary Differential Equations; Numerical Methods and Algorithms; Computational Methods and Algorithms; Numerical Models and Simulation. These two volumes are aimed at those seeking in-depth of advanced knowledge: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs.


Functional Integration and Partial Differential Equations. (AM-109), Volume 109

Functional Integration and Partial Differential Equations. (AM-109), Volume 109

Author: Mark Iosifovich Freidlin

Publisher: Princeton University Press

Published: 2016-03-02

Total Pages: 557

ISBN-13: 1400881595

DOWNLOAD EBOOK

This book discusses some aspects of the theory of partial differential equations from the viewpoint of probability theory. It is intended not only for specialists in partial differential equations or probability theory but also for specialists in asymptotic methods and in functional analysis. It is also of interest to physicists who use functional integrals in their research. The work contains results that have not previously appeared in book form, including research contributions of the author.