Foundations of Set Theory

Foundations of Set Theory

Author: A.A. Fraenkel

Publisher: Elsevier

Published: 1973-12-01

Total Pages: 415

ISBN-13: 0080887058

DOWNLOAD EBOOK

Foundations of Set Theory discusses the reconstruction undergone by set theory in the hands of Brouwer, Russell, and Zermelo. Only in the axiomatic foundations, however, have there been such extensive, almost revolutionary, developments. This book tries to avoid a detailed discussion of those topics which would have required heavy technical machinery, while describing the major results obtained in their treatment if these results could be stated in relatively non-technical terms. This book comprises five chapters and begins with a discussion of the antinomies that led to the reconstruction of set theory as it was known before. It then moves to the axiomatic foundations of set theory, including a discussion of the basic notions of equality and extensionality and axioms of comprehension and infinity. The next chapters discuss type-theoretical approaches, including the ideal calculus, the theory of types, and Quine's mathematical logic and new foundations; intuitionistic conceptions of mathematics and its constructive character; and metamathematical and semantical approaches, such as the Hilbert program. This book will be of interest to mathematicians, logicians, and statisticians.


Set Theory And Foundations Of Mathematics: An Introduction To Mathematical Logic - Volume I: Set Theory

Set Theory And Foundations Of Mathematics: An Introduction To Mathematical Logic - Volume I: Set Theory

Author: Douglas Cenzer

Publisher: World Scientific

Published: 2020-04-04

Total Pages: 222

ISBN-13: 9811201943

DOWNLOAD EBOOK

This book provides an introduction to axiomatic set theory and descriptive set theory. It is written for the upper level undergraduate or beginning graduate students to help them prepare for advanced study in set theory and mathematical logic as well as other areas of mathematics, such as analysis, topology, and algebra.The book is designed as a flexible and accessible text for a one-semester introductory course in set theory, where the existing alternatives may be more demanding or specialized. Readers will learn the universally accepted basis of the field, with several popular topics added as an option. Pointers to more advanced study are scattered throughout the text.


The Foundations of Mathematics in the Theory of Sets

The Foundations of Mathematics in the Theory of Sets

Author: John P. Mayberry

Publisher: Cambridge University Press

Published: 2000

Total Pages: 454

ISBN-13: 9780521770347

DOWNLOAD EBOOK

This book presents a unified approach to the foundations of mathematics in the theory of sets, covering both conventional and finitary (constructive) mathematics. It is based on a philosophical, historical and mathematical analysis of the relation between the concepts of 'natural number' and 'set'. The author investigates the logic of quantification over the universe of sets and discusses its role in second order logic, as well as in the analysis of proof by induction and definition by recursion. Suitable for graduate students and researchers in both philosophy and mathematics.


Basic Set Theory

Basic Set Theory

Author: Azriel Levy

Publisher: Courier Corporation

Published: 2012-06-11

Total Pages: 418

ISBN-13: 0486150739

DOWNLOAD EBOOK

Although this book deals with basic set theory (in general, it stops short of areas where model-theoretic methods are used) on a rather advanced level, it does it at an unhurried pace. This enables the author to pay close attention to interesting and important aspects of the topic that might otherwise be skipped over. Written for upper-level undergraduate and graduate students, the book is divided into two parts. The first covers pure set theory, including the basic notions, order and well-foundedness, cardinal numbers, the ordinals, and the axiom of choice and some of its consequences. The second part deals with applications and advanced topics, among them a review of point set topology, the real spaces, Boolean algebras, and infinite combinatorics and large cardinals. A helpful appendix deals with eliminability and conservation theorems, while numerous exercises supply additional information on the subject matter and help students test their grasp of the material. 1979 edition. 20 figures.


Defending the Axioms

Defending the Axioms

Author: Penelope Maddy

Publisher: Oxford University Press

Published: 2011-01-27

Total Pages: 161

ISBN-13: 0199596182

DOWNLOAD EBOOK

Mathematics depends on proofs, and proofs must begin somewhere, from some fundamental assumptions. The axioms of set theory have long played this role, so the question of how they are properly judged is of central importance. Maddy discusses the appropriate methods for such evaluations and the philosophical backdrop that makes them appropriate.