Foundations of Quantum Group Theory

Foundations of Quantum Group Theory

Author: Shahn Majid

Publisher: Cambridge University Press

Published: 2000

Total Pages: 668

ISBN-13: 9780521648684

DOWNLOAD EBOOK

A graduate level text which systematically lays out the foundations of Quantum Groups.


Quantum Theory, Groups and Representations

Quantum Theory, Groups and Representations

Author: Peter Woit

Publisher: Springer

Published: 2017-11-01

Total Pages: 659

ISBN-13: 3319646125

DOWNLOAD EBOOK

This text systematically presents the basics of quantum mechanics, emphasizing the role of Lie groups, Lie algebras, and their unitary representations. The mathematical structure of the subject is brought to the fore, intentionally avoiding significant overlap with material from standard physics courses in quantum mechanics and quantum field theory. The level of presentation is attractive to mathematics students looking to learn about both quantum mechanics and representation theory, while also appealing to physics students who would like to know more about the mathematics underlying the subject. This text showcases the numerous differences between typical mathematical and physical treatments of the subject. The latter portions of the book focus on central mathematical objects that occur in the Standard Model of particle physics, underlining the deep and intimate connections between mathematics and the physical world. While an elementary physics course of some kind would be helpful to the reader, no specific background in physics is assumed, making this book accessible to students with a grounding in multivariable calculus and linear algebra. Many exercises are provided to develop the reader's understanding of and facility in quantum-theoretical concepts and calculations.


Group Theory and Quantum Mechanics

Group Theory and Quantum Mechanics

Author: Michael Tinkham

Publisher: Courier Corporation

Published: 2012-04-20

Total Pages: 354

ISBN-13: 0486131661

DOWNLOAD EBOOK

This graduate-level text develops the aspects of group theory most relevant to physics and chemistry (such as the theory of representations) and illustrates their applications to quantum mechanics. The first five chapters focus chiefly on the introduction of methods, illustrated by physical examples, and the final three chapters offer a systematic treatment of the quantum theory of atoms, molecules, and solids. The formal theory of finite groups and their representation is developed in Chapters 1 through 4 and illustrated by examples from the crystallographic point groups basic to solid-state and molecular theory. Chapter 5 is devoted to the theory of systems with full rotational symmetry, Chapter 6 to the systematic presentation of atomic structure, and Chapter 7 to molecular quantum mechanics. Chapter 8, which deals with solid-state physics, treats electronic energy band theory and magnetic crystal symmetry. A compact and worthwhile compilation of the scattered material on standard methods, this volume presumes a basic understanding of quantum theory.


Group Theory and Quantum Mechanics

Group Theory and Quantum Mechanics

Author: Bartel L. van der Waerden

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 220

ISBN-13: 3642658601

DOWNLOAD EBOOK

The German edition of this book appeared in 1932 under the title "Die gruppentheoretische Methode in der Quantenmechanik". Its aim was, to explain the fundamental notions of the Theory of Groups and their Representations, and the application of this theory to the Quantum Mechanics of Atoms and Molecules. The book was mainly written for the benefit of physicists who were supposed to be familiar with Quantum Mechanics. However, it turned out that it was also used by. mathematicians who wanted to learn Quantum Mechanics from it. Naturally, the physical parts were too difficult for mathematicians, whereas the mathematical parts were sometimes too difficult for physicists. The German language created an additional difficulty for many readers. In order to make the book more readable for physicists and mathe maticians alike, I have rewritten the whole volume. The changes are most notable in Chapters 1 and 6. In Chapter t, I have tried to give a mathematically rigorous exposition of the principles of Quantum Mechanics. This was possible because recent investigations in the theory of self-adjoint linear operators have made the mathematical foundation of Quantum Mechanics much clearer than it was in t 932. Chapter 6, on Molecule Spectra, was too much condensed in the German edition. I hope it is now easier to understand. In Chapter 2-5 too, numerous changes were made in order to make the book more readable and more useful.


Group Theoretical Foundations of Quantum Mechanics

Group Theoretical Foundations of Quantum Mechanics

Author: R. Mirman

Publisher: iUniverse

Published: 2005-05

Total Pages: 281

ISBN-13: 059534125X

DOWNLOAD EBOOK

Table of Contents Preface 1 Foundations 1 2 Why Geometry, so Physics, Require Complex Numbers 25 3 Properties of Statefunctions 38 4 The Foundations of Coherent Superposition 58 5 Geometry, Transformations, Groups and Observers 85 6 The Poincare Group and Its Implications 108 7 The Dimension of Space 122 8 Bosons, Fermions, Spinors and Orthogonal Groups 146 9 The Complete Reasonableness of Quantum Mechanics 159 A: Terminology and Conventions 177 The Einstein Podolsky Rosen Paradox 185 Experimental Meaning of the Concept of Identical Particles 191 Nonexistence of Superselection Rules; Definition of Term "Frame of Reference" 203 Complex Groups, Quantum Mechanics, and the Dimension and Reality of Space 221 The Reality and Dimension of Space and the Complexity of Quantum Mechanics 235 References 255 Index 259.


Quantum Field Theory Conformal Group Theory Conformal Field Theory

Quantum Field Theory Conformal Group Theory Conformal Field Theory

Author: R. Mirman

Publisher: iUniverse

Published: 2005-02

Total Pages: 313

ISBN-13: 0595336922

DOWNLOAD EBOOK

The conformal group is the invariance group of geometry (which is not understood), the largest one. Physical applications are implied, as discussed, including reasons for interactions. The group structure as well as those of related groups are analyzed. An inhomogeneous group is a subgroup of a homogeneous one because of nonlinearities of the realization. Conservation of baryons (protons can't decay) is explained and proven. Reasons for various realizations, so matrix elements, of the Lorentz group given. The clearly relevant mass level formula is compared with experimental values. Questions, implications and possibilities, including for differential equations, are raised.


A Guide to Quantum Groups

A Guide to Quantum Groups

Author: Vyjayanthi Chari

Publisher: Cambridge University Press

Published: 1995-07-27

Total Pages: 672

ISBN-13: 9780521558846

DOWNLOAD EBOOK

Since they first arose in the 1970s and early 1980s, quantum groups have proved to be of great interest to mathematicians and theoretical physicists. The theory of quantum groups is now well established as a fascinating chapter of representation theory, and has thrown new light on many different topics, notably low-dimensional topology and conformal field theory. The goal of this book is to give a comprehensive view of quantum groups and their applications. The authors build on a self-contained account of the foundations of the subject and go on to treat the more advanced aspects concisely and with detailed references to the literature. Thus this book can serve both as an introduction for the newcomer, and as a guide for the more experienced reader. All who have an interest in the subject will welcome this unique treatment of quantum groups.


Foundations of Quantum Theory

Foundations of Quantum Theory

Author: Klaas Landsman

Publisher:

Published: 2020-10-09

Total Pages: 880

ISBN-13: 9781013278365

DOWNLOAD EBOOK

This book studies the foundations of quantum theory through its relationship to classical physics. This idea goes back to the Copenhagen Interpretation (in the original version due to Bohr and Heisenberg), which the author relates to the mathematical formalism of operator algebras originally created by von Neumann. The book therefore includes comprehensive appendices on functional analysis and C*-algebras, as well as a briefer one on logic, category theory, and topos theory. Matters of foundational as well as mathematical interest that are covered in detail include symmetry (and its "spontaneous" breaking), the measurement problem, the Kochen-Specker, Free Will, and Bell Theorems, the Kadison-Singer conjecture, quantization, indistinguishable particles, the quantum theory of large systems, and quantum logic, the latter in connection with the topos approach to quantum theory. This work was published by Saint Philip Street Press pursuant to a Creative Commons license permitting commercial use. All rights not granted by the work's license are retained by the author or authors.


Mathematical Foundations of Quantum Theory

Mathematical Foundations of Quantum Theory

Author: A.R. Marlow

Publisher: Elsevier

Published: 2012-12-02

Total Pages: 383

ISBN-13: 0323141188

DOWNLOAD EBOOK

Mathematical Foundations of Quantum Theory is a collection of papers presented at the 1977 conference on the Mathematical Foundations of Quantum Theory, held in New Orleans. The contributors present their topics from a wide variety of backgrounds and specialization, but all shared a common interest in answering quantum issues. Organized into 20 chapters, this book's opening chapters establish a sound mathematical basis for quantum theory and a mode of observation in the double slit experiment. This book then describes the Lorentz particle system and other mathematical structures with which fundamental quantum theory must deal, and then some unsolved problems in the quantum logic approach to the foundations of quantum mechanics are considered. Considerable chapters cover topics on manuals and logics for quantum mechanics. This book also examines the problems in quantum logic, and then presents examples of their interpretation and relevance to nonclassical logic and statistics. The accommodation of conventional Fermi-Dirac and Bose-Einstein statistics in quantum mechanics or quantum field theory is illustrated. The final chapters of the book present a system of axioms for nonrelativistic quantum mechanics, with particular emphasis on the role of density operators as states. Specific connections of this theory with other formulations of quantum theory are also considered. These chapters also deal with the determination of the state of an elementary quantum mechanical system by the associated position and momentum distribution. This book is of value to physicists, mathematicians, and researchers who are interested in quantum theory.