Foundations of Modern Potential Theory

Foundations of Modern Potential Theory

Author: Naum S. Landkof

Publisher: Springer

Published: 2011-11-15

Total Pages: 0

ISBN-13: 9783642651854

DOWNLOAD EBOOK

For a long time potential theory was necessarily viewed as only another chapter of mathematical physics. Developing in close connection with the theory of boundary-value problems for the Laplace operator, it led to the creation of the mathematical apparatus of potentials of single and double layers; this was adequate for treating problems involving smooth boundaries. A. M. Lyapunov is to be credited with the rigorous analysis of the properties of potentials and the possibilities for applying them to the 1 solution of boundary-value problems. The results he obtained at the end of the 19th century later received a more detailed and sharpened exposition in the book by N. M. Gunter, published in Paris in 1934 and 2 in New York 1967 with additions and revisions. Of fundamental significance to potential theory also was the work of H. Poincare, especially his method of sweeping out mass (balayage). At the beginning of the 20th century the work of S. Zaremba and especially of H. Lebesgue attracted the attention of mathematicians to the unsolvable cases of the classical Dirichlet problem. Through the efforts of O. Kellogg, G. Bouligand, and primarily N. Wiener, by the middle of the 20th century the problem of characterizing the so-called irregular points of the boundary of a region (i. e. the points at which the continuity of the solution of the Dirichlet problem may be violated) was completely solved and a procedure to obtain a generalized solution to the Dirichlet problem was described.


Foundations of Modern Probability

Foundations of Modern Probability

Author: Olav Kallenberg

Publisher: Springer Science & Business Media

Published: 2002-01-08

Total Pages: 670

ISBN-13: 9780387953137

DOWNLOAD EBOOK

The first edition of this single volume on the theory of probability has become a highly-praised standard reference for many areas of probability theory. Chapters from the first edition have been revised and corrected, and this edition contains four new chapters. New material covered includes multivariate and ratio ergodic theorems, shift coupling, Palm distributions, Harris recurrence, invariant measures, and strong and weak ergodicity.


Foundations of Potential Theory

Foundations of Potential Theory

Author: Oliver Dimon Kellogg

Publisher: Courier Corporation

Published: 1953-01-01

Total Pages: 404

ISBN-13: 9780486601441

DOWNLOAD EBOOK

Introduction to fundamentals of potential functions covers the force of gravity, fields of force, potentials, harmonic functions, electric images and Green's function, sequences of harmonic functions, fundamental existence theorems, the logarithmic potential, and much more. Detailed proofs rigorously worked out. 1929 edition.


Foundations of Modern Probability

Foundations of Modern Probability

Author: Olav Kallenberg

Publisher: Springer Nature

Published: 2021-02-07

Total Pages: 946

ISBN-13: 3030618714

DOWNLOAD EBOOK

The first edition of this single volume on the theory of probability has become a highly-praised standard reference for many areas of probability theory. Chapters from the first edition have been revised and corrected, and this edition contains four new chapters. New material covered includes multivariate and ratio ergodic theorems, shift coupling, Palm distributions, Harris recurrence, invariant measures, and strong and weak ergodicity.


Foundations of Modern Physics

Foundations of Modern Physics

Author: Steven Weinberg

Publisher: Cambridge University Press

Published: 2021-04-22

Total Pages: 325

ISBN-13: 1108841767

DOWNLOAD EBOOK

Nobel Laureate Steven Weinberg explains the foundations of modern physics in historical context for undergraduates and beyond.


Potential Theory

Potential Theory

Author: Jürgen Bliedtner

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 448

ISBN-13: 3642711316

DOWNLOAD EBOOK

During the last thirty years potential theory has undergone a rapid development, much of which can still only be found in the original papers. This book deals with one part of this development, and has two aims. The first is to give a comprehensive account of the close connection between analytic and probabilistic potential theory with the notion of a balayage space appearing as a natural link. The second aim is to demonstrate the fundamental importance of this concept by using it to give a straight presentation of balayage theory which in turn is then applied to the Dirichlet problem. We have considered it to be beyond the scope of this book to treat further topics such as duality, ideal boundary and integral representation, energy and Dirichlet forms. The subject matter of this book originates in the relation between classical potential theory and the theory of Brownian motion. Both theories are linked with the Laplace operator. However, the deep connection between these two theories was first revealed in the papers of S. KAKUTANI [1], [2], [3], M. KAC [1] and J. L. DO DB [2] during the period 1944-54: This can be expressed by the·fact that the harmonic measures which occur in the solution of the Dirichlet problem are hitting distri butions for Brownian motion or, equivalently, that the positive hyperharmonic func tions for the Laplace equation are the excessive functions of the Brownian semi group.


Potential Theory

Potential Theory

Author: Masanori Kishi

Publisher: Walter de Gruyter

Published: 2011-05-02

Total Pages: 417

ISBN-13: 3110859068

DOWNLOAD EBOOK

The series is aimed specifically at publishing peer reviewed reviews and contributions presented at workshops and conferences. Each volume is associated with a particular conference, symposium or workshop. These events cover various topics within pure and applied mathematics and provide up-to-date coverage of new developments, methods and applications.