Foundations of Ergodic Theory

Foundations of Ergodic Theory

Author: Marcelo Viana

Publisher: Cambridge University Press

Published: 2016-02-15

Total Pages: 547

ISBN-13: 1316445429

DOWNLOAD EBOOK

Rich with examples and applications, this textbook provides a coherent and self-contained introduction to ergodic theory, suitable for a variety of one- or two-semester courses. The authors' clear and fluent exposition helps the reader to grasp quickly the most important ideas of the theory, and their use of concrete examples illustrates these ideas and puts the results into perspective. The book requires few prerequisites, with background material supplied in the appendix. The first four chapters cover elementary material suitable for undergraduate students – invariance, recurrence and ergodicity – as well as some of the main examples. The authors then gradually build up to more sophisticated topics, including correlations, equivalent systems, entropy, the variational principle and thermodynamical formalism. The 400 exercises increase in difficulty through the text and test the reader's understanding of the whole theory. Hints and solutions are provided at the end of the book.


Foundations of Ergodic Theory

Foundations of Ergodic Theory

Author: Marcelo Viana

Publisher: Cambridge University Press

Published: 2016-02-15

Total Pages: 547

ISBN-13: 1107126967

DOWNLOAD EBOOK

Self-contained introductory textbook suitable for a variety of one- or two-semester courses. Rich with examples, applications and exercises.


Ergodic Theory

Ergodic Theory

Author: Manfred Einsiedler

Publisher: Springer Science & Business Media

Published: 2010-09-11

Total Pages: 486

ISBN-13: 0857290215

DOWNLOAD EBOOK

This text is a rigorous introduction to ergodic theory, developing the machinery of conditional measures and expectations, mixing, and recurrence. Beginning by developing the basics of ergodic theory and progressing to describe some recent applications to number theory, this book goes beyond the standard texts in this topic. Applications include Weyl's polynomial equidistribution theorem, the ergodic proof of Szemeredi's theorem, the connection between the continued fraction map and the modular surface, and a proof of the equidistribution of horocycle orbits. Ergodic Theory with a view towards Number Theory will appeal to mathematicians with some standard background in measure theory and functional analysis. No background in ergodic theory or Lie theory is assumed, and a number of exercises and hints to problems are included, making this the perfect companion for graduate students and researchers in ergodic theory, homogenous dynamics or number theory.


Fundamentals of Measurable Dynamics

Fundamentals of Measurable Dynamics

Author: Daniel J. Rudolph

Publisher: Oxford University Press, USA

Published: 1990

Total Pages: 190

ISBN-13:

DOWNLOAD EBOOK

This book is designed to provide graduate students and other researchers in dynamical systems theory with an introduction to the ergodic theory of Lebesgue spaces. The author's aim is to present a technically complete account which offers an in-depth understanding of the techniques of the field, both classical and modern. Thus, the basic structure theorems of Lebesgue spaces are given in detail as well as complete accounts of the ergodic theory of a single transformation, ergodic theorems, mixing properties and entropy. Subsequent chapters extend the earlier material to the areas of joinings and representation theorems, in particular the theorems of Ornstein and Krieger. Prerequisites are a working knowledge of Lebesgue measure and the topology of the real line as might be gained from the first year of a graduate course. Many exercises and examples are included to illustrate and to further cement the reader's understanding of the material. The result is a text which will furnish the reader with a sound technical background from the foundations of the subject to some of its most recent developments.


An Outline of Ergodic Theory

An Outline of Ergodic Theory

Author: Steven Kalikow

Publisher: Cambridge University Press

Published: 2010-03-25

Total Pages: 183

ISBN-13: 1139484257

DOWNLOAD EBOOK

This informal introduction provides a fresh perspective on isomorphism theory, which is the branch of ergodic theory that explores the conditions under which two measure preserving systems are essentially equivalent. It contains a primer in basic measure theory, proofs of fundamental ergodic theorems, and material on entropy, martingales, Bernoulli processes, and various varieties of mixing. Original proofs of classic theorems - including the Shannon–McMillan–Breiman theorem, the Krieger finite generator theorem, and the Ornstein isomorphism theorem - are presented by degrees, together with helpful hints that encourage the reader to develop the proofs on their own. Hundreds of exercises and open problems are also included, making this an ideal text for graduate courses. Professionals needing a quick review, or seeking a different perspective on the subject, will also value this book.


Foundations of Classical and Quantum Statistical Mechanics

Foundations of Classical and Quantum Statistical Mechanics

Author: R. Jancel

Publisher: Elsevier

Published: 2013-10-22

Total Pages: 441

ISBN-13: 1483186261

DOWNLOAD EBOOK

Foundations of Classical and Quantum Statistical Mechanics details the theoretical foundation the supports the concepts in classical and quantum statistical mechanics. The title discusses the various problems set by the theoretical justification of statistical mechanics methods. The text first covers the the ergodic theory in classical statistical mechanics, and then proceeds to tackling quantum mechanical ensembles. Next, the selection discusses the the ergodic theorem in quantum statistical mechanics and probability quantum ergodic theorems. The selection also details H-theorems and kinetic equations in classical and quantum statistical mechanics. The book will be of great interest to students, researchers, and practitioners of physics, chemistry, and engineering.


Ergodic Theory via Joinings

Ergodic Theory via Joinings

Author: Eli Glasner

Publisher: American Mathematical Soc.

Published: 2015-01-09

Total Pages: 402

ISBN-13: 1470419513

DOWNLOAD EBOOK

This book introduces modern ergodic theory. It emphasizes a new approach that relies on the technique of joining two (or more) dynamical systems. This approach has proved to be fruitful in many recent works, and this is the first time that the entire theory is presented from a joining perspective. Another new feature of the book is the presentation of basic definitions of ergodic theory in terms of the Koopman unitary representation associated with a dynamical system and the invariant mean on matrix coefficients, which exists for any acting groups, amenable or not. Accordingly, the first part of the book treats the ergodic theory for an action of an arbitrary countable group. The second part, which deals with entropy theory, is confined (for the sake of simplicity) to the classical case of a single measure-preserving transformation on a Lebesgue probability space.


Foundations of Modern Probability

Foundations of Modern Probability

Author: Olav Kallenberg

Publisher: Springer Science & Business Media

Published: 2002-01-08

Total Pages: 670

ISBN-13: 9780387953137

DOWNLOAD EBOOK

The first edition of this single volume on the theory of probability has become a highly-praised standard reference for many areas of probability theory. Chapters from the first edition have been revised and corrected, and this edition contains four new chapters. New material covered includes multivariate and ratio ergodic theorems, shift coupling, Palm distributions, Harris recurrence, invariant measures, and strong and weak ergodicity.


Ergodic Theory, Hyperbolic Dynamics and Dimension Theory

Ergodic Theory, Hyperbolic Dynamics and Dimension Theory

Author: Luís Barreira

Publisher: Springer Science & Business Media

Published: 2012-04-28

Total Pages: 295

ISBN-13: 3642280900

DOWNLOAD EBOOK

Over the last two decades, the dimension theory of dynamical systems has progressively developed into an independent and extremely active field of research. The main aim of this volume is to offer a unified, self-contained introduction to the interplay of these three main areas of research: ergodic theory, hyperbolic dynamics, and dimension theory. It starts with the basic notions of the first two topics and ends with a sufficiently high-level introduction to the third. Furthermore, it includes an introduction to the thermodynamic formalism, which is an important tool in dimension theory. The volume is primarily intended for graduate students interested in dynamical systems, as well as researchers in other areas who wish to learn about ergodic theory, thermodynamic formalism, or dimension theory of hyperbolic dynamics at an intermediate level in a sufficiently detailed manner. In particular, it can be used as a basis for graduate courses on any of these three subjects. The text can also be used for self-study: it is self-contained, and with the exception of some well-known basic facts from other areas, all statements include detailed proofs.


Mathematical Foundations of Information Theory

Mathematical Foundations of Information Theory

Author: Aleksandr I?Akovlevich Khinchin

Publisher: Courier Corporation

Published: 1957-01-01

Total Pages: 130

ISBN-13: 0486604349

DOWNLOAD EBOOK

First comprehensive introduction to information theory explores the work of Shannon, McMillan, Feinstein, and Khinchin. Topics include the entropy concept in probability theory, fundamental theorems, and other subjects. 1957 edition.