This book focuses on the basic principles of digital electronics and logic design. It is designed as a textbook for undergraduate students of electronics, electrical engineering, computer science, physics, and information technology. The text covers the syllabi of several Indian and foreign universities. It depicts the comprehensive resources
This text is intended for a first course in digital logic design, at the sophomore or junior level, for electrical engineering, computer engineering and computer science programs, as well as for a number of other disciplines such as physics and mathematics. The book can also be used for self-study or for review by practicing engineers and computer scientists not intimately familiar with the subject. After completing this text, the student should be prepared for a second (advanced) course in digital design, switching and automata theory, microprocessors or computer organization. Request Inspection Copy
This text is intended for a first course in digital logic design, at the sophomore or junior level, for electrical engineering, computer engineering and computer science programs, as well as for a number of other disciplines such as physics and mathematics. The book can also be used for self-study or for review by practicing engineers and computer scientists not intimately familiar with the subject. After completing this text, the student should be prepared for a second (advanced) course in digital design, switching and automata theory, microprocessors or computer organization.
New, updated and expanded topics in the fourth edition include: EBCDIC, Grey code, practical applications of flip-flops, linear and shaft encoders, memory elements and FPGAs. The section on fault-finding has been expanded. A new chapter is dedicated to the interface between digital components and analog voltages. - A highly accessible, comprehensive and fully up to date digital systems text - A well known and respected text now revamped for current courses - Part of the Newnes suite of texts for HND/1st year modules
Fundamentals of Digital Logic and Microcomputer Design, haslong been hailed for its clear and simple presentation of theprinciples and basic tools required to design typical digitalsystems such as microcomputers. In this Fifth Edition, the authorfocuses on computer design at three levels: the device level, thelogic level, and the system level. Basic topics are covered, suchas number systems and Boolean algebra, combinational and sequentiallogic design, as well as more advanced subjects such as assemblylanguage programming and microprocessor-based system design.Numerous examples are provided throughout the text. Coverage includes: Digital circuits at the gate and flip-flop levels Analysis and design of combinational and sequentialcircuits Microcomputer organization, architecture, and programmingconcepts Design of computer instruction sets, CPU, memory, and I/O System design features associated with popular microprocessorsfrom Intel and Motorola Future plans in microprocessor development An instructor's manual, available upon request Additionally, the accompanying CD-ROM, contains step-by-stepprocedures for installing and using Altera Quartus II software,MASM 6.11 (8086), and 68asmsim (68000), provides valuablesimulation results via screen shots. Fundamentals of Digital Logic and Microcomputer Design is anessential reference that will provide you with the fundamentaltools you need to design typical digital systems.
This textbook, based on the authors' fifteen years of teaching, is a complete teaching tool for turning students into logic designers in one semester. Each chapter describes new concepts, giving extensive applications and examples. Assuming no prior knowledge of discrete mathematics, the authors introduce all background in propositional logic, asymptotics, graphs, hardware and electronics. Important features of the presentation are: • All material is presented in full detail. Every designed circuit is formally specified and implemented, the correctness of the implementation is proved, and the cost and delay are analyzed • Algorithmic solutions are offered for logical simulation, computation of propagation delay and minimum clock period • Connections are drawn from the physical analog world to the digital abstraction • The language of graphs is used to describe formulas and circuits • Hundreds of figures, examples and exercises enhance understanding. The extensive website (http://www.eng.tau.ac.il/~guy/Even-Medina/) includes teaching slides, links to Logisim and a DLX assembly simulator.
This complete introduction to computer engineering includes the use of the microprocessor as a building block for digital logic design. The authors offer a top-down approach to designing digital systems, with consideration of both hardware and software. They emphasize structured design throughout, and the design methods, techniques, and notations are consistent with this theme. The first part of the book lays the foundation for structured design techniques; the second part provides the fundamentals of microprocessor and up-based design. Topics covered include mixed logic notation, the algorithm state machine, and structured programming techniques with well-documented programs. Contains an abundance of examples and end-of-chapter problems.
Updated with modern coverage, a streamlined presentation, and an excellent CD-ROM, this fifth edition achieves a balance between theory and application. Author Charles H. Roth, Jr. carefully presents the theory that is necessary for understanding the fundamental concepts of logic design while not overwhelming students with the mathematics of switching theory. Divided into 20 easy-to-grasp study units, the book covers such fundamental concepts as Boolean algebra, logic gates design, flip-flops, and state machines. By combining flip-flops with networks of logic gates, students will learn to design counters, adders, sequence detectors, and simple digital systems. After covering the basics, this text presents modern design techniques using programmable logic devices and the VHDL hardware description language.
The Fourth edition of this well-received text continues to provide coherent and comprehensive coverage of digital circuits. It is designed for the undergraduate students pursuing courses in areas of engineering disciplines such as Electrical and Electronics, Electronics and Communication, Electronics and Instrumentation, Telecommunications, Medical Electronics, Computer Science and Engineering, Electronics, and Computers and Information Technology. It is also useful as a text for MCA, M.Sc. (Electronics) and M.Sc. (Computer Science) students. Appropriate for self study, the book is useful even for AMIE and grad IETE students. Written in a student-friendly style, the book provides an excellent introduction to digital concepts and basic design techniques of digital circuits. It discusses Boolean algebra concepts and their application to digital circuitry, and elaborates on both combinational and sequential circuits. It provides numerous fully worked-out, laboratory tested examples to give students a solid grounding in the related design concepts. It includes a number of short questions with answers, review questions, fill in the blanks with answers, multiple choice questions with answers and exercise problems at the end of each chapter. As the book requires only an elementary knowledge of electronics to understand most of the topics, it can also serve as a textbook for the students of polytechnics, B.Sc. (Electronics) and B.Sc. (Computer Science). NEW TO THIS EDITION Now, based on the readers’ demand, this new edition incorporates VERILOG programs in addition to VHDL programs at the end of each chapter.