Foundations of Cryptography: Volume 1, Basic Tools

Foundations of Cryptography: Volume 1, Basic Tools

Author: Oded Goldreich

Publisher: Cambridge University Press

Published: 2001-08-06

Total Pages: 392

ISBN-13: 9780521791724

DOWNLOAD EBOOK

Cryptography is concerned with the conceptualization, definition and construction of computing systems that address security concerns. This book presents a rigorous and systematic treatment of the foundational issues: defining cryptographic tasks and solving new cryptographic problems using existing tools. It focuses on the basic mathematical tools: computational difficulty (one-way functions), pseudorandomness and zero-knowledge proofs. Rather than describing ad-hoc approaches, this book emphasizes the clarification of fundamental concepts and the demonstration of the feasibility of solving cryptographic problems. It is suitable for use in a graduate course on cryptography and as a reference book for experts.


Foundations of Cryptography: Volume 2, Basic Applications

Foundations of Cryptography: Volume 2, Basic Applications

Author: Oded Goldreich

Publisher: Cambridge University Press

Published: 2009-09-17

Total Pages: 390

ISBN-13: 1107393973

DOWNLOAD EBOOK

Cryptography is concerned with the conceptualization, definition and construction of computing systems that address security concerns. The design of cryptographic systems must be based on firm foundations. Foundations of Cryptography presents a rigorous and systematic treatment of foundational issues, defining cryptographic tasks and solving cryptographic problems. The emphasis is on the clarification of fundamental concepts and on demonstrating the feasibility of solving several central cryptographic problems, as opposed to describing ad-hoc approaches. This second volume contains a thorough treatment of three basic applications: Encryption, Signatures, and General Cryptographic Protocols. It builds on the previous volume, which provided a treatment of one-way functions, pseudorandomness, and zero-knowledge proofs. It is suitable for use in a graduate course on cryptography and as a reference book for experts. The author assumes basic familiarity with the design and analysis of algorithms; some knowledge of complexity theory and probability is also useful.


Foundations of Cryptography

Foundations of Cryptography

Author: Oded Goldreich

Publisher: Now Publishers Inc

Published: 2005

Total Pages: 133

ISBN-13: 1933019026

DOWNLOAD EBOOK

Revolutionary developments which took place in the 1980's have transformed cryptography from a semi-scientific discipline to a respectable field in theoretical Computer Science. In particular, concepts such as computational indistinguishability, pseudorandomness and zero-knowledge interactive proofs were introduced and classical notions as secure encryption and unforgeable signatures were placed on sound grounds. The resulting field of cryptography, reviewed in this survey, is strongly linked to complexity theory (in contrast to 'classical' cryptography which is strongly related to information theory).


Tutorials on the Foundations of Cryptography

Tutorials on the Foundations of Cryptography

Author: Yehuda Lindell

Publisher: Springer

Published: 2017-04-05

Total Pages: 461

ISBN-13: 331957048X

DOWNLOAD EBOOK

This is a graduate textbook of advanced tutorials on the theory of cryptography and computational complexity. In particular, the chapters explain aspects of garbled circuits, public-key cryptography, pseudorandom functions, one-way functions, homomorphic encryption, the simulation proof technique, and the complexity of differential privacy. Most chapters progress methodically through motivations, foundations, definitions, major results, issues surrounding feasibility, surveys of recent developments, and suggestions for further study. This book honors Professor Oded Goldreich, a pioneering scientist, educator, and mentor. Oded was instrumental in laying down the foundations of cryptography, and he inspired the contributing authors, Benny Applebaum, Boaz Barak, Andrej Bogdanov, Iftach Haitner, Shai Halevi, Yehuda Lindell, Alon Rosen, and Salil Vadhan, themselves leading researchers on the theory of cryptography and computational complexity. The book is appropriate for graduate tutorials and seminars, and for self-study by experienced researchers, assuming prior knowledge of the theory of cryptography.


Fundamentals of Cryptography

Fundamentals of Cryptography

Author: Duncan Buell

Publisher: Springer Nature

Published: 2021-07-17

Total Pages: 279

ISBN-13: 3030734927

DOWNLOAD EBOOK

Cryptography, as done in this century, is heavily mathematical. But it also has roots in what is computationally feasible. This unique textbook text balances the theorems of mathematics against the feasibility of computation. Cryptography is something one actually “does”, not a mathematical game one proves theorems about. There is deep math; there are some theorems that must be proved; and there is a need to recognize the brilliant work done by those who focus on theory. But at the level of an undergraduate course, the emphasis should be first on knowing and understanding the algorithms and how to implement them, and also to be aware that the algorithms must be implemented carefully to avoid the “easy” ways to break the cryptography. This text covers the algorithmic foundations and is complemented by core mathematics and arithmetic.


Introduction to Cryptography

Introduction to Cryptography

Author: Hans Delfs

Publisher: Springer Science & Business Media

Published: 2007-05-31

Total Pages: 372

ISBN-13: 3540492445

DOWNLOAD EBOOK

Due to the rapid growth of digital communication and electronic data exchange, information security has become a crucial issue in industry, business, and administration. Modern cryptography provides essential techniques for securing information and protecting data. In the first part, this book covers the key concepts of cryptography on an undergraduate level, from encryption and digital signatures to cryptographic protocols. Essential techniques are demonstrated in protocols for key exchange, user identification, electronic elections and digital cash. In the second part, more advanced topics are addressed, such as the bit security of one-way functions and computationally perfect pseudorandom bit generators. The security of cryptographic schemes is a central topic. Typical examples of provably secure encryption and signature schemes and their security proofs are given. Though particular attention is given to the mathematical foundations, no special background in mathematics is presumed. The necessary algebra, number theory and probability theory are included in the appendix. Each chapter closes with a collection of exercises. The second edition contains corrections, revisions and new material, including a complete description of the AES, an extended section on cryptographic hash functions, a new section on random oracle proofs, and a new section on public-key encryption schemes that are provably secure against adaptively-chosen-ciphertext attacks.


Introduction to Modern Cryptography

Introduction to Modern Cryptography

Author: Jonathan Katz

Publisher: CRC Press

Published: 2020-12-21

Total Pages: 435

ISBN-13: 1351133012

DOWNLOAD EBOOK

Now the most used texbook for introductory cryptography courses in both mathematics and computer science, the Third Edition builds upon previous editions by offering several new sections, topics, and exercises. The authors present the core principles of modern cryptography, with emphasis on formal definitions, rigorous proofs of security.


Modern Cryptography, Probabilistic Proofs and Pseudorandomness

Modern Cryptography, Probabilistic Proofs and Pseudorandomness

Author: Oded Goldreich

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 192

ISBN-13: 3662125218

DOWNLOAD EBOOK

Cryptography is one of the most active areas in current mathematics research and applications. This book focuses on cryptography along with two related areas: the study of probabilistic proof systems, and the theory of computational pseudorandomness. Following a common theme that explores the interplay between randomness and computation, the important notions in each field are covered, as well as novel ideas and insights.


Introduction to Cryptography with Mathematical Foundations and Computer Implementations

Introduction to Cryptography with Mathematical Foundations and Computer Implementations

Author: Alexander Stanoyevitch

Publisher: CRC Press

Published: 2010-08-09

Total Pages: 646

ISBN-13: 1439817634

DOWNLOAD EBOOK

From the exciting history of its development in ancient times to the present day, Introduction to Cryptography with Mathematical Foundations and Computer Implementations provides a focused tour of the central concepts of cryptography. Rather than present an encyclopedic treatment of topics in cryptography, it delineates cryptographic concepts in chronological order, developing the mathematics as needed. Written in an engaging yet rigorous style, each chapter introduces important concepts with clear definitions and theorems. Numerous examples explain key points while figures and tables help illustrate more difficult or subtle concepts. Each chapter is punctuated with "Exercises for the Reader;" complete solutions for these are included in an appendix. Carefully crafted exercise sets are also provided at the end of each chapter, and detailed solutions to most odd-numbered exercises can be found in a designated appendix. The computer implementation section at the end of every chapter guides students through the process of writing their own programs. A supporting website provides an extensive set of sample programs as well as downloadable platform-independent applet pages for some core programs and algorithms. As the reliance on cryptography by business, government, and industry continues and new technologies for transferring data become available, cryptography plays a permanent, important role in day-to-day operations. This self-contained sophomore-level text traces the evolution of the field, from its origins through present-day cryptosystems, including public key cryptography and elliptic curve cryptography.


An Introduction to Mathematical Cryptography

An Introduction to Mathematical Cryptography

Author: Jeffrey Hoffstein

Publisher: Springer

Published: 2014-09-11

Total Pages: 549

ISBN-13: 1493917110

DOWNLOAD EBOOK

This self-contained introduction to modern cryptography emphasizes the mathematics behind the theory of public key cryptosystems and digital signature schemes. The book focuses on these key topics while developing the mathematical tools needed for the construction and security analysis of diverse cryptosystems. Only basic linear algebra is required of the reader; techniques from algebra, number theory, and probability are introduced and developed as required. This text provides an ideal introduction for mathematics and computer science students to the mathematical foundations of modern cryptography. The book includes an extensive bibliography and index; supplementary materials are available online. The book covers a variety of topics that are considered central to mathematical cryptography. Key topics include: classical cryptographic constructions, such as Diffie–Hellmann key exchange, discrete logarithm-based cryptosystems, the RSA cryptosystem, and digital signatures; fundamental mathematical tools for cryptography, including primality testing, factorization algorithms, probability theory, information theory, and collision algorithms; an in-depth treatment of important cryptographic innovations, such as elliptic curves, elliptic curve and pairing-based cryptography, lattices, lattice-based cryptography, and the NTRU cryptosystem. The second edition of An Introduction to Mathematical Cryptography includes a significant revision of the material on digital signatures, including an earlier introduction to RSA, Elgamal, and DSA signatures, and new material on lattice-based signatures and rejection sampling. Many sections have been rewritten or expanded for clarity, especially in the chapters on information theory, elliptic curves, and lattices, and the chapter of additional topics has been expanded to include sections on digital cash and homomorphic encryption. Numerous new exercises have been included.