Foundations of Computational Intelligence Volume 2

Foundations of Computational Intelligence Volume 2

Author: Aboul-Ella Hassanien

Publisher: Springer Science & Business Media

Published: 2009-06-15

Total Pages: 313

ISBN-13: 3642015328

DOWNLOAD EBOOK

Foundations of Computational Intelligence Volume 2: Approximation Reasoning: Theoretical Foundations and Applications Human reasoning usually is very approximate and involves various types of - certainties. Approximate reasoning is the computational modelling of any part of the process used by humans to reason about natural phenomena or to solve real world problems. The scope of this book includes fuzzy sets, Dempster-Shafer theory, multi-valued logic, probability, random sets, and rough set, near set and hybrid intelligent systems. Besides research articles and expository papers on t- ory and algorithms of approximation reasoning, papers on numerical experiments and real world applications were also encouraged. This Volume comprises of 12 chapters including an overview chapter providing an up-to-date and state-of-the research on the applications of Computational Intelligence techniques for - proximation reasoning. The Volume is divided into 2 parts: Part-I: Approximate Reasoning – Theoretical Foundations Part-II: Approximate Reasoning – Success Stories and Real World Applications Part I on Approximate Reasoning – Theoretical Foundations contains four ch- ters that describe several approaches of fuzzy and Para consistent annotated logic approximation reasoning. In Chapter 1, “Fuzzy Sets, Near Sets, and Rough Sets for Your Computational Intelligence Toolbox” by Peters considers how a user might utilize fuzzy sets, near sets, and rough sets, taken separately or taken together in hybridizations as part of a computational intelligence toolbox. In multi-criteria decision making, it is necessary to aggregate (combine) utility values corresponding to several criteria (parameters).


Fundamentals of Computational Intelligence

Fundamentals of Computational Intelligence

Author: James M. Keller

Publisher: John Wiley & Sons

Published: 2016-07-13

Total Pages: 378

ISBN-13: 111921436X

DOWNLOAD EBOOK

Provides an in-depth and even treatment of the three pillars of computational intelligence and how they relate to one another This book covers the three fundamental topics that form the basis of computational intelligence: neural networks, fuzzy systems, and evolutionary computation. The text focuses on inspiration, design, theory, and practical aspects of implementing procedures to solve real-world problems. While other books in the three fields that comprise computational intelligence are written by specialists in one discipline, this book is co-written by current former Editor-in-Chief of IEEE Transactions on Neural Networks and Learning Systems, a former Editor-in-Chief of IEEE Transactions on Fuzzy Systems, and the founding Editor-in-Chief of IEEE Transactions on Evolutionary Computation. The coverage across the three topics is both uniform and consistent in style and notation. Discusses single-layer and multilayer neural networks, radial-basis function networks, and recurrent neural networks Covers fuzzy set theory, fuzzy relations, fuzzy logic interference, fuzzy clustering and classification, fuzzy measures and fuzzy integrals Examines evolutionary optimization, evolutionary learning and problem solving, and collective intelligence Includes end-of-chapter practice problems that will help readers apply methods and techniques to real-world problems Fundamentals of Computational intelligence is written for advanced undergraduates, graduate students, and practitioners in electrical and computer engineering, computer science, and other engineering disciplines.


Artificial Intelligence

Artificial Intelligence

Author: David L. Poole

Publisher: Cambridge University Press

Published: 2017-09-25

Total Pages: 821

ISBN-13: 110719539X

DOWNLOAD EBOOK

Artificial Intelligence presents a practical guide to AI, including agents, machine learning and problem-solving simple and complex domains.


Foundations of Computational Intelligence Volume 3

Foundations of Computational Intelligence Volume 3

Author: Ajith Abraham

Publisher: Springer

Published: 2009-05-01

Total Pages: 531

ISBN-13: 3642010857

DOWNLOAD EBOOK

Global optimization is a branch of applied mathematics and numerical analysis that deals with the task of finding the absolutely best set of admissible conditions to satisfy certain criteria / objective function(s), formulated in mathematical terms. Global optimization includes nonlinear, stochastic and combinatorial programming, multiobjective programming, control, games, geometry, approximation, algorithms for parallel architectures and so on. Due to its wide usage and applications, it has gained the attention of researchers and practitioners from a plethora of scientific domains. Typical practical examples of global optimization applications include: Traveling salesman problem and electrical circuit design (minimize the path length); safety engineering (building and mechanical structures); mathematical problems (Kepler conjecture); Protein structure prediction (minimize the energy function) etc. Global Optimization algorithms may be categorized into several types: Deterministic (example: branch and bound methods), Stochastic optimization (example: simulated annealing). Heuristics and meta-heuristics (example: evolutionary algorithms) etc. Recently there has been a growing interest in combining global and local search strategies to solve more complicated optimization problems. This edited volume comprises 17 chapters, including several overview Chapters, which provides an up-to-date and state-of-the art research covering the theory and algorithms of global optimization. Besides research articles and expository papers on theory and algorithms of global optimization, papers on numerical experiments and on real world applications were also encouraged. The book is divided into 2 main parts.


Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing

Software Engineering, Artificial Intelligence, Networking and Parallel/Distributed Computing

Author: Roger Lee

Publisher: Springer Science & Business Media

Published: 2009-04-30

Total Pages: 289

ISBN-13: 3642012027

DOWNLOAD EBOOK

The purpose of the 10th ACIS International Conference on Software Engineering Artificial Intelligence, Networking and Parallel/Distributed Computing (SNPD rd 2009), held in Daegu, Korea on May 27–29, 2009, the 3 International Workshop st on e-Activity (IWEA 2009) and the 1 International Workshop on Enterprise Architecture Challenges and Responses (WEACR 2009) is to aim at bringing together researchers and scientist, businessmen and entrepreneurs, teachers and students to discuss the numerous fields of computer science, and to share ideas and information in a meaningful way. Our conference officers selected the best 24 papers from those papers accepted for presentation at the conference in order to publish them in this volume. The papers were chosen based on review scores submitted by members of the program committee, and underwent further rounds of rigorous review. In chapter 1, Igor Crk and Chris Gniady propose a network-aware energy m- agement mechanism that provides a low-cost solution that can significantly reduce energy consumption in the entire system while maintaining responsiveness of local interactive workloads. Their dynamic mechanisms reduce the decision delay before the disk is spun-up, reduce the number of erroneous spin-ups in local wo- stations, decrease the network bandwidth, and reduce the energy consumption of individual drives. In chapter 2, Yoshihito Saito and Tokuro Matsuo describe a task allocation mechanism and its performance concerning with software developing. They run simulations and discuss the results in terms of effective strategies of task allocation.


Hybrid Self-Organizing Modeling Systems

Hybrid Self-Organizing Modeling Systems

Author: Godfrey C Onwubolu

Publisher: Springer Science & Business Media

Published: 2009-06-15

Total Pages: 297

ISBN-13: 3642015298

DOWNLOAD EBOOK

The Group Method of Data Handling (GMDH) is a typical inductive modeling method that is built on principles of self-organization for modeling complex systems. This book clearly presents hybrids of some computational intelligence techniques and GMDH approach.


Recent Advances in Decision Making

Recent Advances in Decision Making

Author: Elisabeth Rakus-Andersson

Publisher: Springer Science & Business Media

Published: 2009-08-04

Total Pages: 184

ISBN-13: 3642021867

DOWNLOAD EBOOK

Intelligent paradigms are increasingly finding their ways in the design and development of decision support systems. This book presents a sample of recent research results from key researchers. The contributions include: Introduction to intelligent systems in decision making - A new method of ranking intuitionistic fuzzy alternatives - Fuzzy rule base model identification by bacterial memetic algorithms - Discovering associations with uncertainty from large databases - Dempster-Shafer structures, monotonic set measures and decision making - Interpretable decision-making models - A general methodology for managerial decision making - Supporting decision making via verbalization of data analysis results using linguistic data summaries - Computational intelligence in medical decisions making. This book is directed to the researchers, graduate students, professors, decision makers and to those who are interested to investigate intelligent paradigms in decision making.


Computational Intelligence Techniques for Bioprocess Modelling, Supervision and Control

Computational Intelligence Techniques for Bioprocess Modelling, Supervision and Control

Author: Maria Carmo Nicoletti

Publisher: Springer

Published: 2009-07-09

Total Pages: 349

ISBN-13: 3642018882

DOWNLOAD EBOOK

Computational Intelligence (CI) and Bioprocess are well-established research areas which have much to offer each other. Under the perspective of the CI area, Biop- cess can be considered a vast application area with a growing number of complex and challenging tasks to be dealt with, whose solutions can contribute to boosting the development of new intelligent techniques as well as to help the refinement and s- cialization of many of the already existing techniques. Under the perspective of the Bioprocess area, CI can be considered a useful repertoire of theories, methods and techniques that can contribute and offer interesting alternative approaches for solving many of its problems, particularly those hard to solve using conventional techniques. Although throughout the past years CI and Bioprocess areas have accumulated substantial specific knowledge and progress has been quick and with a high degree of success, we believe there is still a long way to go in order to use the potentialities of the available CI techniques and knowledge at their full extent, as tools for supporting problem solving in bioprocesses. One of the reasons is the fact that both areas have progressed steadily and have been continuously accumulating and refining specific knowledge; another reason is the high level of technical expertise demanded by each of them. The acquisition of technical skills, experience and good insights in either of the two areas is very demanding and a hard task to be accomplished by any professional.


Foundations of Computational Intelligence Volume 5

Foundations of Computational Intelligence Volume 5

Author: Ajith Abraham

Publisher: Springer Science & Business Media

Published: 2009-06-30

Total Pages: 378

ISBN-13: 3642015352

DOWNLOAD EBOOK

Foundations of Computational Intelligence Volume 5: Function Approximation and Classification Approximation theory is that area of analysis which is concerned with the ability to approximate functions by simpler and more easily calculated functions. It is an area which, like many other fields of analysis, has its primary roots in the mat- matics. The need for function approximation and classification arises in many branches of applied mathematics, computer science and data mining in particular. This edited volume comprises of 14 chapters, including several overview Ch- ters, which provides an up-to-date and state-of-the art research covering the theory and algorithms of function approximation and classification. Besides research ar- cles and expository papers on theory and algorithms of function approximation and classification, papers on numerical experiments and real world applications were also encouraged. The Volume is divided into 2 parts: Part-I: Function Approximation and Classification – Theoretical Foundations Part-II: Function Approximation and Classification – Success Stories and Real World Applications Part I on Function Approximation and Classification – Theoretical Foundations contains six chapters that describe several approaches Feature Selection, the use Decomposition of Correlation Integral, Some Issues on Extensions of Information and Dynamic Information System and a Probabilistic Approach to the Evaluation and Combination of Preferences Chapter 1 “Feature Selection for Partial Least Square Based Dimension Red- tion” by Li and Zeng investigate a systematic feature reduction framework by combing dimension reduction with feature selection. To evaluate the proposed framework authors used four typical data sets.


Computer and Information Science 2009

Computer and Information Science 2009

Author: Roger Lee

Publisher: Springer

Published: 2009-05-01

Total Pages: 310

ISBN-13: 3642012094

DOWNLOAD EBOOK

This volume includes the best papers of the IEEE/ACIS International Conference on Computer and Information Science, ICIS 2009, held on June 2009 in Shanghai, China.