Written by a pioneer of mathematical logic, this comprehensive graduate-level text explores the constructive theory of first-order predicate calculus. It covers formal methods — including algorithms and epitheory — and offers a brief treatment of Markov's approach to algorithms. It also explains elementary facts about lattices and similar algebraic systems. 1963 edition.
Combinatory logic and lambda-calculus, originally devised in the 1920's, have since developed into linguistic tools, especially useful in programming languages. The authors' previous book served as the main reference for introductory courses on lambda-calculus for over 20 years: this long-awaited new version is thoroughly revised and offers a fully up-to-date account of the subject, with the same authoritative exposition. The grammar and basic properties of both combinatory logic and lambda-calculus are discussed, followed by an introduction to type-theory. Typed and untyped versions of the systems, and their differences, are covered. Lambda-calculus models, which lie behind much of the semantics of programming languages, are also explained in depth. The treatment is as non-technical as possible, with the main ideas emphasized and illustrated by examples. Many exercises are included, from routine to advanced, with solutions to most at the end of the book.
The author of Forever Undecided, Raymond Smullyan continues to delight and astonish us with his gift for making available, in the thoroughly pleasurable form of puzzles, some of the most important mathematical thinking of our time.
Combinatory logic and lambda-conversion were originally devised in the 1920s for investigating the foundations of mathematics using the basic concept of 'operation' instead of 'set'. They have now developed into linguistic tools, useful in several branches of logic and computer science, especially in the study of programming languages. These notes form a simple introduction to the two topics, suitable for a reader who has no previous knowledge of combinatory logic, but has taken an undergraduate course in predicate calculus and recursive functions. The key ideas and basic results are presented, as well as a number of more specialised topics, and man), exercises are included to provide manipulative practice.
Classic undergraduate text acquaints students with fundamental concepts and methods of mathematics. Topics include axiomatic method, set theory, infinite sets, groups, intuitionism, formal systems, mathematical logic, and much more. 1965 second edition.
This book is an attempt to give a systematic presentation of both logic and type theory from a categorical perspective, using the unifying concept of fibred category. Its intended audience consists of logicians, type theorists, category theorists and (theoretical) computer scientists.
"This book is intended for readers who, while mature mathematically, have no knowledge of mathematical logic. We attempt to introduce the reader to the most important approaches to the subject, and, wherever possible within the limitations of space which we have set for ourselves, to give at least a few nontrivial results illustrating each of the important methods for attacking logical problems"--Preface.
The revised edition contains a new chapter which provides an elegant description of the semantics. The various classes of lambda calculus models are described in a uniform manner. Some didactical improvements have been made to this edition. An example of a simple model is given and then the general theory (of categorical models) is developed. Indications are given of those parts of the book which can be used to form a coherent course.
This work presents a series of dramatic discoveries never before made public. Starting from a collection of simple computer experiments---illustrated in the book by striking computer graphics---Wolfram shows how their unexpected results force a whole new way of looking at the operation of our universe. Wolfram uses his approach to tackle a remarkable array of fundamental problems in science: from the origin of the Second Law of thermodynamics, to the development of complexity in biology, the computational limitations of mathematics, the possibility of a truly fundamental theory of physics, and the interplay between free will and determinism.