Foundations of Applied Mathematics, Volume 2

Foundations of Applied Mathematics, Volume 2

Author: Jeffrey Humpherys

Publisher: SIAM

Published: 2020-03-10

Total Pages: 806

ISBN-13: 1611976065

DOWNLOAD EBOOK

In this second book of what will be a four-volume series, the authors present, in a mathematically rigorous way, the essential foundations of both the theory and practice of algorithms, approximation, and optimization—essential topics in modern applied and computational mathematics. This material is the introductory framework upon which algorithm analysis, optimization, probability, statistics, machine learning, and control theory are built. This text gives a unified treatment of several topics that do not usually appear together: the theory and analysis of algorithms for mathematicians and data science students; probability and its applications; the theory and applications of approximation, including Fourier series, wavelets, and polynomial approximation; and the theory and practice of optimization, including dynamic optimization. When used in concert with the free supplemental lab materials, Foundations of Applied Mathematics, Volume 2: Algorithms, Approximation, Optimization teaches not only the theory but also the computational practice of modern mathematical methods. Exercises and examples build upon each other in a way that continually reinforces previous ideas, allowing students to retain learned concepts while achieving a greater depth. The mathematically rigorous lab content guides students to technical proficiency and answers the age-old question “When am I going to use this?” This textbook is geared toward advanced undergraduate and beginning graduate students in mathematics, data science, and machine learning.


Foundations of Applied Mathematics, Volume I

Foundations of Applied Mathematics, Volume I

Author: Jeffrey Humpherys

Publisher: SIAM

Published: 2017-07-07

Total Pages: 710

ISBN-13: 1611974895

DOWNLOAD EBOOK

This book provides the essential foundations of both linear and nonlinear analysis necessary for understanding and working in twenty-first century applied and computational mathematics. In addition to the standard topics, this text includes several key concepts of modern applied mathematical analysis that should be, but are not typically, included in advanced undergraduate and beginning graduate mathematics curricula. This material is the introductory foundation upon which algorithm analysis, optimization, probability, statistics, differential equations, machine learning, and control theory are built. When used in concert with the free supplemental lab materials, this text teaches students both the theory and the computational practice of modern mathematical analysis. Foundations of Applied Mathematics, Volume 1: Mathematical Analysis includes several key topics not usually treated in courses at this level, such as uniform contraction mappings, the continuous linear extension theorem, Daniell?Lebesgue integration, resolvents, spectral resolution theory, and pseudospectra. Ideas are developed in a mathematically rigorous way and students are provided with powerful tools and beautiful ideas that yield a number of nice proofs, all of which contribute to a deep understanding of advanced analysis and linear algebra. Carefully thought out exercises and examples are built on each other to reinforce and retain concepts and ideas and to achieve greater depth. Associated lab materials are available that expose students to applications and numerical computation and reinforce the theoretical ideas taught in the text. The text and labs combine to make students technically proficient and to answer the age-old question, "When am I going to use this?


Foundations of Applied Mathematics

Foundations of Applied Mathematics

Author: Michael D. Greenberg

Publisher: Courier Corporation

Published: 2013-01-01

Total Pages: 660

ISBN-13: 0486492796

DOWNLOAD EBOOK

"A longtime classic text in applied mathematics, this volume also serves as a reference for undergraduate and graduate students of engineering. Topics include real variable theory, complex variables, linear analysis, partial and ordinary differential equations, and other subjects. Answers to selected exercises are provided, along with Fourier and Laplace transformation tables and useful formulas. 1978 edition"--


Introduction to the Foundations of Applied Mathematics

Introduction to the Foundations of Applied Mathematics

Author: Mark H. Holmes

Publisher: Springer Science & Business Media

Published: 2009-06-18

Total Pages: 477

ISBN-13: 0387877657

DOWNLOAD EBOOK

FOAM. This acronym has been used for over ?fty years at Rensselaer to designate an upper-division course entitled, Foundations of Applied Ma- ematics. This course was started by George Handelman in 1956, when he came to Rensselaer from the Carnegie Institute of Technology. His objective was to closely integrate mathematical and physical reasoning, and in the p- cess enable students to obtain a qualitative understanding of the world we live in. FOAM was soon taken over by a young faculty member, Lee Segel. About this time a similar course, Introduction to Applied Mathematics, was introduced by Chia-Ch’iao Lin at the Massachusetts Institute of Technology. Together Lin and Segel, with help from Handelman, produced one of the landmark textbooks in applied mathematics, Mathematics Applied to - terministic Problems in the Natural Sciences. This was originally published in 1974, and republished in 1988 by the Society for Industrial and Applied Mathematics, in their Classics Series. This textbook comes from the author teaching FOAM over the last few years. In this sense, it is an updated version of the Lin and Segel textbook.


The Fundamentals of Mathematical Analysis

The Fundamentals of Mathematical Analysis

Author: G. M. Fikhtengol'ts

Publisher: Elsevier

Published: 2014-08-01

Total Pages: 541

ISBN-13: 1483154130

DOWNLOAD EBOOK

The Fundamentals of Mathematical Analysis, Volume 2 is a continuation of the discussion of the fundamentals of mathematical analysis, specifically on the subject of curvilinear and surface integrals, with emphasis on the difference between the curvilinear and surface ""integrals of first kind"" and ""integrals of second kind."" The discussions in the book start with an introduction to the elementary concepts of series of numbers, infinite sequences and their limits, and the continuity of the sum of a series. The definition of improper integrals of unbounded functions and that of uniform convergence of integrals are explained. Curvilinear integrals of the first and second kinds are analyzed mathematically. The book then notes the application of surface integrals, through a parametric representation of a surface, and the calculation of the mass of a solid. The text also highlights that Green's formula, which connects a double integral over a plane domain with curvilinear integral along the contour of the domain, has an analogue in Ostrogradski's formula. The periodic values and harmonic analysis such as that found in the operation of a steam engine are analyzed. The volume ends with a note of further developments in mathematical analysis, which is a chronological presentation of important milestones in the history of analysis. The book is an ideal reference for mathematicians, students, and professors of calculus and advanced mathematics.


Foundations of Orientation and Mobility

Foundations of Orientation and Mobility

Author: William R. Wiener

Publisher: American Foundation for the Blind

Published: 2010

Total Pages: 722

ISBN-13: 0891284486

DOWNLOAD EBOOK

Foundations of Orientation and Mobility, the classic professional reference and textbook has been completely revised and expanded to two volumes by the most knowledgeable experts in the field. The new third edition includes both the latest research in O&M and expanded information on practice and teaching strategies. Volume 1, History and Theory, includes the bases of O&M knowledge, including perception, orientation, low vision, audition, kinesiology, psychosocial issues, and learning theories, as well as chapters on technology, dog guides, orientation aids, and environmental accessibility. A section on the profession of O&M includes its international history; administration, assessment and program planning; and a chapter on research in O&M. No O&M student or professional can afford to be without this essential resource.


Numerical Analysis

Numerical Analysis

Author: David Ronald Kincaid

Publisher: American Mathematical Soc.

Published: 2009

Total Pages: 810

ISBN-13: 0821847880

DOWNLOAD EBOOK

This book introduces students with diverse backgrounds to various types of mathematical analysis that are commonly needed in scientific computing. The subject of numerical analysis is treated from a mathematical point of view, offering a complete analysis of methods for scientific computing with appropriate motivations and careful proofs. In an engaging and informal style, the authors demonstrate that many computational procedures and intriguing questions of computer science arise from theorems and proofs. Algorithms are presented in pseudocode, so that students can immediately write computer programs in standard languages or use interactive mathematical software packages. This book occasionally touches upon more advanced topics that are not usually contained in standard textbooks at this level.


Applied Mathematics

Applied Mathematics

Author: Gerald D. Mahan

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 374

ISBN-13: 1461513154

DOWNLOAD EBOOK

This volume is a textbook for a year-long graduate level course in All research universities have applied mathematics for scientists and engineers. such a course, which could be taught in different departments, such as mathematics, physics, or engineering. I volunteered to teach this course when I realized that my own research students did not learn much in this course at my university. Then I learned that the available textbooks were too introduc tory. While teaching this course without an assigned text, I wrote up my lecture notes and gave them to the students. This textbook is a result of that endeavor. When I took this course many, many, years ago, the primary references were the two volumes of P. M. Morse and H. Feshbach, Methods of Theoretical Physics (McGraw-Hill, 1953). The present text returns the contents to a similar level, although the syllabus is quite different than given in this venerable pair of books.


Theoretical Foundations and Numerical Methods for Sparse Recovery

Theoretical Foundations and Numerical Methods for Sparse Recovery

Author: Massimo Fornasier

Publisher: Walter de Gruyter

Published: 2010-07-30

Total Pages: 351

ISBN-13: 3110226154

DOWNLOAD EBOOK

The present collection is the very first contribution of this type in the field of sparse recovery. Compressed sensing is one of the important facets of the broader concept presented in the book, which by now has made connections with other branches such as mathematical imaging, inverse problems, numerical analysis and simulation. The book consists of four lecture notes of courses given at the Summer School on "Theoretical Foundations and Numerical Methods for Sparse Recovery" held at the Johann Radon Institute for Computational and Applied Mathematics in Linz, Austria, in September 2009. This unique collection will be of value for a broad community and may serve as a textbook for graduate courses. From the contents: "Compressive Sensing and Structured Random Matrices" by Holger Rauhut "Numerical Methods for Sparse Recovery" by Massimo Fornasier "Sparse Recovery in Inverse Problems" by Ronny Ramlau and Gerd Teschke "An Introduction to Total Variation for Image Analysis" by Antonin Chambolle, Vicent Caselles, Daniel Cremers, Matteo Novaga and Thomas Pock