Formation Control

Formation Control

Author: Hyo-Sung Ahn

Publisher: Springer

Published: 2019-03-29

Total Pages: 368

ISBN-13: 3030151875

DOWNLOAD EBOOK

This monograph introduces recent developments in formation control of distributed-agent systems. Eschewing the traditional concern with the dynamic characteristics of individual agents, the book proposes a treatment that studies the formation control problem in terms of interactions among agents including factors such as sensing topology, communication and actuation topologies, and computations. Keeping pace with recent technological advancements in control, communications, sensing and computation that have begun to bring the applications of distributed-systems theory out of the industrial sphere and into that of day-to-day life, this monograph provides distributed control algorithms for a group of agents that may behave together. Unlike traditional control laws that usually require measurements with respect to a global coordinate frame and communications between a centralized operation center and agents, this book provides control laws that require only relative measurements and communications between agents without interaction with a centralized operator. Since the control algorithms presented in this book do not require any global sensing and any information exchanges with a centralized operation center, they can be realized in a fully distributed way, which significantly reduces the operation and implementation costs of a group of agents. Formation Control will give both students and researchers interested in pursuing this field a good grounding on which to base their work.


Formation Control of Multi-Agent Systems

Formation Control of Multi-Agent Systems

Author: Marcio de Queiroz

Publisher: John Wiley & Sons

Published: 2019-04-08

Total Pages: 204

ISBN-13: 1118887441

DOWNLOAD EBOOK

A comprehensive guide to formation control of multi-agent systems using rigid graph theory This book is the first to provide a comprehensive and unified treatment of the subject of graph rigidity-based formation control of multi-agent systems. Such systems are relevant to a variety of emerging engineering applications, including unmanned robotic vehicles and mobile sensor networks. Graph theory, and rigid graphs in particular, provides a natural tool for describing the multi-agent formation shape as well as the inter-agent sensing, communication, and control topology. Beginning with an introduction to rigid graph theory, the contents of the book are organized by the agent dynamic model (single integrator, double integrator, and mechanical dynamics) and by the type of formation problem (formation acquisition, formation manoeuvring, and target interception). The book presents the material in ascending level of difficulty and in a self-contained manner; thus, facilitating reader understanding. Key features: Uses the concept of graph rigidity as the basis for describing the multi-agent formation geometry and solving formation control problems. Considers different agent models and formation control problems. Control designs throughout the book progressively build upon each other. Provides a primer on rigid graph theory. Combines theory, computer simulations, and experimental results. Formation Control of Multi-Agent Systems: A Graph Rigidity Approach is targeted at researchers and graduate students in the areas of control systems and robotics. Prerequisite knowledge includes linear algebra, matrix theory, control systems, and nonlinear systems.


Cooperative Coordination and Formation Control for Multi-agent Systems

Cooperative Coordination and Formation Control for Multi-agent Systems

Author: Zhiyong Sun

Publisher: Springer

Published: 2018-02-23

Total Pages: 189

ISBN-13: 3319742655

DOWNLOAD EBOOK

The thesis presents new results on multi-agent formation control, focusing on the distributed stabilization control of rigid formation shapes. It analyzes a range of current research problems such as problems concerning the equilibrium and stability of formation control systems, or the problem of cooperative coordination control when agents have general dynamical models, and discusses practical considerations arising during the implementation of established formation control algorithms. In addition, the thesis presents models of increasing complexity, from single integrator models, to double integrator models, to agents modeled by nonlinear kinematic and dynamic equations, including the familiar unicycle model and nonlinear system equations with drift terms. Presenting the fruits of a close collaboration between several top control groups at leading universities including Yale University, Groningen University, Purdue University and Gwangju Institute of Science and Technology (GIST), the thesis spans various research areas, including robustness issues in formations, quantization-based coordination, exponential stability in formation systems, and cooperative coordination of networked heterogeneous systems.


Flight Formation Control

Flight Formation Control

Author: Josep M. Guerrero

Publisher: John Wiley & Sons

Published: 2012-12-17

Total Pages: 279

ISBN-13: 1118563220

DOWNLOAD EBOOK

In the last decade the development and control of Unmanned Aerial Vehicles (UAVs) has attracted a lot of interest. Both researchers and companies have a growing interest in improving this type of vehicle given their many civilian and military applications. This book presents the state of the art in the area of UAV Flight Formation. The coordination and robust consensus approaches are presented in detail as well as formation flight control strategies which are validated in experimental platforms. It aims at helping students and academics alike to better understand what coordination and flight formation control can make possible. Several novel methods are presented: - controllability and observability of multi-agent systems; - robust consensus; - flight formation control; - stability of formations over noisy networks; which generate solutions of guaranteed performance for UAV Flight Formation. Contents 1. Introduction, J.A. Guerrero. 2. Theoretical Preliminaries, J.A. Guerrero. 3. Multiagent Coordination Strategies, J.A. Guerrero, R. Lozano, M.W. Spong, N. Chopra. 4. Robust Control Design for Multiagent Systems with Parametric Uncertainty, J.A. Guerrero, G. Romero. 5. On Adaptive and Robust Controlled Synchronization of Networked Robotic Systems on Strongly Connected Graphs, Y.-C. Liu, N. Chopra. 6. Modeling and Control of Mini UAV, G. Flores Colunga, J.A. Guerrero, J. Escareño, R. Lozano. 7. Flight Formation Control Strategies for Mini UAVs, J.A. Guerrero. 8. Formation Based on Potential Functions, L. García, A. Dzul. 9. Quadrotor Vision-Based Control, J.E. Gomez-Balderas, J.A. Guerrero, S. SALAZAR, R. Lozano, P. Castillo. 10. Toward Vision-Based Coordination of Quadrotor Platoons, L.R. García Carrillo, J.A. Guerrero, R. Lozano. 11. Optimal Guidance for Rotorcraft Platoon Formation Flying in Wind Fields, J.A. Guerrero, Y. Bestaoui, R. Lozano. 12. Impact of Wireless Medium Access Protocol on the Quadrotor Formation Control, J.A. Guerrero, Y. Challal, P. Castillo. 13. MAC Protocol for Wireless Communications, A. Mendez, M. Panduro, O. Elizarraras, D. Covarrubias. 14. Optimization of a Scannable Pattern for Bidimensional Antenna Arrays to Provide Maximum Performance, A. Reyna, M.A. Panduro, A. Mendez.


A Closer Look at Formation Control

A Closer Look at Formation Control

Author: Dianwei Qian

Publisher: Nova Science Publishers

Published: 2020

Total Pages: 0

ISBN-13: 9781536181777

DOWNLOAD EBOOK

"Formation control is one of the most challenging problems in cooperative multi-robots. It is defined as a coordination of a group of robots to get into and to maintain a formation with a certain shape. The formation control problem has drawn significant attention for many years, and now it is well understood and tends to be mature. This control problem is originated from biological inspires such as flocking and schooling. Its classification includes formation shape generation, formation reconfiguration and selection, formation tracking, and role assignment in formation. It also has potential applications in search and rescue missions, forest fire detection and surveillance, etc. It can be extended to many real world systems, autonomous robots, such as underwater vehicles, unmanned aerial vehicles, mobile sensor networks, rectangular agents, nonholonomic mobile robots, to name but a few. Apparently, the book cannot include all research topics. The editor and the authors wish that it could reveal some tendencies on this research field and benefit readers. In this book, different aspects of formation control are explored. Chapters includes some new tendencies and developments in research on several formation methods of multi-robot systems, that is, the 1st-order sliding mode control, the 2nd-order sliding mode control, the integral sliding mode control, the terminal sliding mode control, the sliding model control of multi-agents and the fuzzy-based formation control of multiple quadrotor systems"--


Formation Control of Multiple Autonomous Vehicle Systems

Formation Control of Multiple Autonomous Vehicle Systems

Author: Hugh H. T. Liu

Publisher: John Wiley & Sons

Published: 2018-07-04

Total Pages: 272

ISBN-13: 1119263042

DOWNLOAD EBOOK

This text explores formation control of vehicle systems and introduces three representative systems: space systems, aerial systems and robotic systems Formation Control of Multiple Autonomous Vehicle Systems offers a review of the core concepts of dynamics and control and examines the dynamics and control aspects of formation control in order to study a wide spectrum of dynamic vehicle systems such as spacecraft, unmanned aerial vehicles and robots. The text puts the focus on formation control that enables and stabilizes formation configuration, as well as formation reconfiguration of these vehicle systems. The authors develop a uniform paradigm of describing vehicle systems’ dynamic behaviour that addresses both individual vehicle’s motion and overall group’s movement, as well as interactions between vehicles. The authors explain how the design of proper control techniques regulate the formation motion of these vehicles and the development of a system level decision-making strategy that increases the level of autonomy for the entire group of vehicles to carry out their missions. The text is filled with illustrative case studies in the domains of space, aerial and robotics. • Contains uniform coverage of "formation" dynamic systems development • Presents representative case studies in selected applications in the space, aerial and robotic systems domains • Introduces an experimental platform of using laboratory three-degree-of-freedom helicopters with step-by-step instructions as an example • Provides open source example models and simulation codes • Includes notes and further readings that offer details on relevant research topics, recent progress and further developments in the field Written for researchers and academics in robotics and unmanned systems looking at motion synchronization and formation problems, Formation Control of Multiple Autonomous Vehicle Systems is a vital resource that explores the motion synchronization and formation control of vehicle systems as represented by three representative systems: space systems, aerial systems and robotic systems.


Robust Cooperative Control of Multi-Agent Systems

Robust Cooperative Control of Multi-Agent Systems

Author: Chunyan Wang

Publisher: CRC Press

Published: 2021-05-18

Total Pages: 230

ISBN-13: 100037663X

DOWNLOAD EBOOK

This book presents a concise introduction to the latest advances in robust cooperative control design for multi-agent systems with input delay and external disturbances, especially from a prediction and observation perspective. The volume covers a wide range of applications, such as the trajectory tracking of quadrotors, formation flying of multiple unmanned aerial vehicles (UAVs) and fixed-time formation of ground vehicles. Robust cooperative control means that multi-agent systems are able to achieve specified control tasks while remaining robust in the face of both parametric and nonparametric model uncertainties. In addition, the authors cover a wide range of key issues in cooperative control, such as communication and input delays, parametric model uncertainties and external disturbances. Moving beyond the scope of existing works, a systematic prediction and observation approach to designing robust cooperative control laws is presented. About the Authors Chunyan Wang is an Associate Professor in the School of Aerospace Engineering at Beijing Institute of Technology, China. Zongyu Zuo is a full Professor with the School of Automation Science and Electrical Engineering, Beihang University, China. Jianan Wang is an Associate Professor in the School of Aerospace Engineering at Beijing Institute of Technology, China. Zhengtao Ding is a Professor in the Department of Electrical and Electronic Engineering at University of Manchester, U.K.


Graph Theoretic Methods in Multiagent Networks

Graph Theoretic Methods in Multiagent Networks

Author: Mehran Mesbahi

Publisher: Princeton University Press

Published: 2010-07-01

Total Pages: 424

ISBN-13: 1400835356

DOWNLOAD EBOOK

This accessible book provides an introduction to the analysis and design of dynamic multiagent networks. Such networks are of great interest in a wide range of areas in science and engineering, including: mobile sensor networks, distributed robotics such as formation flying and swarming, quantum networks, networked economics, biological synchronization, and social networks. Focusing on graph theoretic methods for the analysis and synthesis of dynamic multiagent networks, the book presents a powerful new formalism and set of tools for networked systems. The book's three sections look at foundations, multiagent networks, and networks as systems. The authors give an overview of important ideas from graph theory, followed by a detailed account of the agreement protocol and its various extensions, including the behavior of the protocol over undirected, directed, switching, and random networks. They cover topics such as formation control, coverage, distributed estimation, social networks, and games over networks. And they explore intriguing aspects of viewing networks as systems, by making these networks amenable to control-theoretic analysis and automatic synthesis, by monitoring their dynamic evolution, and by examining higher-order interaction models in terms of simplicial complexes and their applications. The book will interest graduate students working in systems and control, as well as in computer science and robotics. It will be a standard reference for researchers seeking a self-contained account of system-theoretic aspects of multiagent networks and their wide-ranging applications. This book has been adopted as a textbook at the following universities: ? University of Stuttgart, Germany Royal Institute of Technology, Sweden Johannes Kepler University, Austria Georgia Tech, USA University of Washington, USA Ohio University, USA


European Robotics Symposium 2008

European Robotics Symposium 2008

Author: Herman Bruyninckx

Publisher: Springer Science & Business Media

Published: 2008-03-25

Total Pages: 372

ISBN-13: 3540783156

DOWNLOAD EBOOK

At the dawn of the new millennium, robotics is undergoing a major transformation in scope and dimension. From a largely dominant industrial focus, robotics is rapidly expanding into the challenges of unstructured environments. Interacting with, assi- ing, serving, and exploring with humans, the emerging robots will increasingly touch people and their lives. The goal of the Springer Tracts in Advanced Robotics (STAR) series is to bring, in a timely fashion, the latest advances and developments in robotics on the basis of their significance and quality. It is our hope that the wider dissemination of research - velopments will stimulate more exchanges and collaborations among the research community and contribute to further advancement of this rapidly growing field. The European Robotics Symposium (EUROS) was launched in 2006 as an inter- tional scientific single-track event promoted by EURON, the European Robotics Network linking most of the European research teams since its inception in 2000. Since then, EUROS has found its parental home under STAR, together with the other thematic symposia devoted to excellence in robotics research: FSR, ISER, ISRR, WAFR.