Forecasting with Maximum Entropy Hb

Forecasting with Maximum Entropy Hb

Author: FORT

Publisher: IOP ebooks

Published: 2022-11-30

Total Pages: 0

ISBN-13: 9780750339292

DOWNLOAD EBOOK

This book aims at providing a unifying framework, based on Information Entropy and its maximization, to connect the phenomenology of evolutionary biology, community ecology, financial economics, and statistical physics. This more comprehensive view, besides providing further insight into problems, enables problem-solving strategies by applying proven methods in one discipline to formally similar problems in other areas. The book also proposes a forecasting method for important practical problems in these disciplines and is directed to researchers, students and practitioners working on modelling the dynamics of complex systems. The common thread is how the flux of information both controls and serves to predict the dynamics of complex systems. It is shown how maximizing the Shannon information entropy allows one to infer a central object controlling the dynamics of complex systems, such as ecosystems or markets. The resulting models, which are known as pairwise maximum-entropy models, can be used to infer interactions from data in a wide variety of systems. Here, two examples are analysed in detail. The first is an application to conservation ecology, namely the issue of providing early warning indicators of population crashes of species of trees in tropical forests. The second is about forecasting the market values of firms through evolutionary economics. An interesting lesson is that PME modelling often produces accurate predictions despite not incorporating explicit interaction mechanisms. Key features Written to be suitable for a broad spectrum of readers and assumes little mathematical specialism. Includes pedagogical features: Worked examples, case studies and summaries. The interdisciplinary approach builds bridges between disciplines. Oriented to solve practical problems. Includes a combination of analytical derivations and numerical simulations with experiments


Entropy Application for Forecasting

Entropy Application for Forecasting

Author: Ana Jesus Lopez-Menendez

Publisher: MDPI

Published: 2020-12-29

Total Pages: 200

ISBN-13: 3039364871

DOWNLOAD EBOOK

This book shows the potential of entropy and information theory in forecasting, including both theoretical developments and empirical applications. The contents cover a great diversity of topics, such as the aggregation and combination of individual forecasts, the comparison of forecasting performance, and the debate concerning the tradeoff between complexity and accuracy. Analyses of forecasting uncertainty, robustness, and inconsistency are also included, as are proposals for new forecasting approaches. The proposed methods encompass a variety of time series techniques (e.g., ARIMA, VAR, state space models) as well as econometric methods and machine learning algorithms. The empirical contents include both simulated experiments and real-world applications focusing on GDP, M4-Competition series, confidence and industrial trend surveys, and stock exchange composite indices, among others. In summary, this collection provides an engaging insight into entropy applications for forecasting, offering an interesting overview of the current situation and suggesting possibilities for further research in this field.


Entropy-Based Parameter Estimation in Hydrology

Entropy-Based Parameter Estimation in Hydrology

Author: Vijay Singh

Publisher: Springer Science & Business Media

Published: 1998-10-31

Total Pages: 400

ISBN-13: 9780792352242

DOWNLOAD EBOOK

Since the pioneering work of Shannon in the late 1940's on the development of the theory of entropy and the landmark contributions of Jaynes a decade later leading to the development of the principle of maximum entropy (POME), the concept of entropy has been increasingly applied in a wide spectrum of areas, including chemistry, electronics and communications engineering, data acquisition and storage and retreival, data monitoring network design, ecology, economics, environmental engineering, earth sciences, fluid mechanics, genetics, geology, geomorphology, geophysics, geotechnical engineering, hydraulics, hydrology, image processing, management sciences, operations research, pattern recognition and identification, photogrammetry, psychology, physics and quantum mechanics, reliability analysis, reservoir engineering, statistical mechanics, thermodynamics, topology, transportation engineering, turbulence modeling, and so on. New areas finding application of entropy have since continued to unfold. The entropy concept is indeed versatile and its applicability widespread. In the area of hydrology and water resources, a range of applications of entropy have been reported during the past three decades or so. This book focuses on parameter estimation using entropy for a number of distributions frequently used in hydrology. In the entropy-based parameter estimation the distribution parameters are expressed in terms of the given information, called constraints. Thus, the method lends itself to a physical interpretation of the parameters. Because the information to be specified usually constitutes sufficient statistics for the distribution under consideration, the entropy method provides a quantitative way to express the information contained in the distribution.


Maximum Entropy and Bayesian Methods

Maximum Entropy and Bayesian Methods

Author: W.T. Grandy Jr.

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 356

ISBN-13: 940113460X

DOWNLOAD EBOOK

The 10th International Workshop on Maximum Entropy and Bayesian Methods, MaxEnt 90, was held in Laramie, Wyoming from 30 July to 3 August 1990. This volume contains the scientific presentations given at that meeting. This series of workshops originated in Laramie in 1981, where the first three of what were to become annual workshops were held. The fourth meeting was held in Calgary. the fifth in Laramie, the sixth and seventh in Seattle, the eighth in Cambridge, England, and the ninth at Hanover, New Hampshire. It is most appropriate that the tenth workshop, occurring in the centennial year of Wyoming's statehood, was once again held in Laramie. The original purpose of these workshops was twofold. The first was to bring together workers from diverse fields of scientific research who individually had been using either some form of the maximum entropy method for treating ill-posed problems or the more general Bayesian analysis, but who, because of the narrow focus that intra-disciplinary work tends to impose upon most of us, might be unaware of progress being made by others using these same techniques in other areas. The second was to introduce to those who were somewhat aware of maximum entropy and Bayesian analysis and wanted to learn more, the foundations, the gestalt, and the power of these analyses. To further the first of these ends, presenters at these workshops have included workers from area. s as varied as astronomy, economics, environmenta.


Maximum Entropy and Bayesian Methods

Maximum Entropy and Bayesian Methods

Author: Kenneth M. Hanson

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 479

ISBN-13: 9401154309

DOWNLOAD EBOOK

Proceedings of the Fifteenth International Workshop on Maximum Entropy and Bayesian Methods, Santa Fe, New Mexico, USA, 1995


Maximum Entropy and Bayesian Methods Garching, Germany 1998

Maximum Entropy and Bayesian Methods Garching, Germany 1998

Author: Wolfgang von der Linden

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 380

ISBN-13: 9401147108

DOWNLOAD EBOOK

In 1978 Edwin T. Jaynes and Myron Tribus initiated a series of workshops to exchange ideas and recent developments in technical aspects and applications of Bayesian probability theory. The first workshop was held at the University of Wyoming in 1981 organized by C.R. Smith and W.T. Grandy. Due to its success, the workshop was held annually during the last 18 years. Over the years, the emphasis of the workshop shifted gradually from fundamental concepts of Bayesian probability theory to increasingly realistic and challenging applications. The 18th international workshop on Maximum Entropy and Bayesian Methods was held in Garching / Munich (Germany) (27-31. July 1998). Opening lectures by G. Larry Bretthorst and by Myron Tribus were dedicated to one of th the pioneers of Bayesian probability theory who died on the 30 of April 1998: Edwin Thompson Jaynes. Jaynes revealed and advocated the correct meaning of 'probability' as the state of knowledge rather than a physical property. This inter pretation allowed him to unravel longstanding mysteries and paradoxes. Bayesian probability theory, "the logic of science" - as E.T. Jaynes called it - provides the framework to make the best possible scientific inference given all available exper imental and theoretical information. We gratefully acknowledge the efforts of Tribus and Bretthorst in commemorating the outstanding contributions of E.T. Jaynes to the development of probability theory.


Entropy Theory in Hydrologic Science and Engineering

Entropy Theory in Hydrologic Science and Engineering

Author: Vijay P. Singh

Publisher: McGraw Hill Professional

Published: 2014-09-22

Total Pages: 849

ISBN-13: 0071835474

DOWNLOAD EBOOK

A THOROUGH INTRODUCTION TO ENTROPY THEORY AND ITS APPLICATIONS IN HYDROLOGIC SCIENCE AND ENGINEERING This comprehensive volume addresses basic concepts of entropy theory from a hydrologic engineering perspective. The application of these concepts to a wide range of hydrologic engineering problems is discussed in detail. The book is divided into sections--preliminaries, rainfall and evapotranspiration, subsurface flow, surface flow, and environmental considerations. Helpful equations, solutions, tables, and diagrams are included throughout this practical resource. Entropy Theory in Hydrologic Science and Engineering covers: Introduction to entropy theory Maximum entropy production principle Performance measures Morphological analysis Evaluation and design of sampling and measurement networks Precipitation variability Rainfall frequency distributions Evaluation of precipitation forecasting schemes Assessment of potential water resources availability Evaporation Infiltration Soil moisture Groundwater flow Rainfall-runoff modeling Streamflow simulation Hydrologic frequency analysis Streamflow forecasting River flow regime classification Sediment yield Eco-index


Entropy in Urban and Regional Modelling (Routledge Revivals)

Entropy in Urban and Regional Modelling (Routledge Revivals)

Author: Alan Wilson

Publisher: Routledge

Published: 2013-01-11

Total Pages: 175

ISBN-13: 1136498524

DOWNLOAD EBOOK

First published in 1970, this groundbreaking investigation into Entropy in Urban and Regional Modelling provides an extensive and detailed insight into the entropy maximising method in the development of a whole class of urban and regional models. The book has its origins in work being carried out by the author in 1966, when he realised that the well-known gravity model could be derived on the basis of an analogy with statistical, rather than Newtonian, mechanics. Subsequent investigation demonstrated that the entropy maximising method stems from an even higher level of generality, and the beginning of the book is devoted to an account of its importance and use as a general modelling tool. This reissue will be welcomed by a range of students and professionals from fields as diverse as urban and regional studies, economics, geography, planning, civil engineering, mathematics and statistics.


Advances in Streamflow Forecasting

Advances in Streamflow Forecasting

Author: Priyanka Sharma

Publisher: Elsevier

Published: 2021-06-20

Total Pages: 406

ISBN-13: 0128209240

DOWNLOAD EBOOK

Advances in Streamflow Forecasting: From Traditional to Modern Approaches covers the three major data-driven approaches of streamflow forecasting including traditional approach of statistical and stochastic time-series modelling with their recent developments, stand-alone data-driven approach such as artificial intelligence techniques, and modern hybridized approach where data-driven models are combined with preprocessing methods to improve the forecast accuracy of streamflows and to reduce the forecast uncertainties. This book starts by providing the background information, overview, and advances made in streamflow forecasting. The overview portrays the progress made in the field of streamflow forecasting over the decades. Thereafter, chapters describe theoretical methodology of the different data-driven tools and techniques used for streamflow forecasting along with case studies from different parts of the world. Each chapter provides a flowchart explaining step-by-step methodology followed in applying the data-driven approach in streamflow forecasting. This book addresses challenges in forecasting streamflows by abridging the gaps between theory and practice through amalgamation of theoretical descriptions of the data-driven techniques and systematic demonstration of procedures used in applying the techniques. Language of this book is kept simple to make the readers understand easily about different techniques and make them capable enough to straightforward replicate the approach in other areas of their interest. This book will be vital for hydrologists when optimizing the water resources system, and to mitigate the impact of destructive natural disasters such as floods and droughts by implementing long-term planning (structural and nonstructural measures), and short-term emergency warning. Moreover, this book will guide the readers in choosing an appropriate technique for streamflow forecasting depending upon the given set of conditions. - Contributions from renowned researchers/experts of the subject from all over the world to provide the most authoritative outlook on streamflow forecasting - Provides an excellent overview and advances made in streamflow forecasting over the past more than five decades and covers both traditional and modern data-driven approaches in streamflow forecasting - Includes case studies along with detailed flowcharts demonstrating a systematic application of different data-driven models in streamflow forecasting, which helps understand the step-by-step procedures


AI-Driven Time Series Forecasting

AI-Driven Time Series Forecasting

Author: Raghurami Reddy Etukuru Ph.D.

Publisher: iUniverse

Published: 2023-10-06

Total Pages: 509

ISBN-13: 166325673X

DOWNLOAD EBOOK

When you enter the world of time series analysis, you step into a labyrinth of numerical patterns, where each turn you take unveils another layer of complexity. Here, simple mathematical or statistical models struggle to keep pace. Reality is riddled with complex patterns in time series data, which, like cryptic pieces of a jigsaw puzzle, hold the key to unraveling insightful predictions. These complex patterns include non-linearity, non-stationarity, long memory or dependence, asymmetry, and stochasticity. But what creates these intricate patterns? Raghurami Reddy Etukuru, Ph.D., a distinguished and adaptable specialist in data science and artificial intelligence, delves into that question in this groundbreaking book, explaining that the factors are numerous and multifaceted, each adding their own measure of challenge. He doesn't just discuss problems but also addresses the forecasting of time series amidst intricate patterns. Take a deep dive deep into the world of numbers and patterns, so you can unravel complexities and leverage the power of artificial intelligence to enhance predictive capabilities. More than just a theoretical guide, this book is a practical companion in the often-turbulent journey of understanding and predicting complex time series data.