Food Enzymes: Structure and Mechanism is the first volume to bring together current information on the structures and mechanisms of important food enzymes. It provides an in-depth discussion of the dynamic aspects of enzyme structures and their relationship to the chemistry of catalysis. The book emphasizes aspects of the chemistry of enzyme structure and mechanism seldom covered in the food science literature. It includes a thorough discussion of the genetic modification of enzyme structures and functions with reference to specific food enzymes. More than 100 illustrations enhance the clarity of important concepts. Comprehensive references reflect the current state of knowledge on enzyme actions.
Food Enzymes: Structure and Mechanism is the first volume to bring together current information on the structures and mechanisms of important food enzymes. It provides an in-depth discussion of the dynamic aspects of enzyme structures and their relationship to the chemistry of catalysis. The book emphasizes aspects of the chemistry of enzyme structure and mechanism seldom covered in the food science literature. It includes a thorough discussion of the genetic modification of enzyme structures and functions with reference to specific food enzymes. More than 100 illustrations enhance the clarity of important concepts. Comprehensive references reflect the current state of knowledge on enzyme actions.
Enzymes: Novel Biotechnological Approaches for the Food Industry provides an in-depth background of the most up-to-date scientific research and information related to food biotechnology and offers a wide spectrum of biological applications. This book addresses novel biotechnological approaches for the use of enzymes in the food industry to help readers understand the potential uses of biological applications to advance research. This is an essential resource to researchers and both undergraduate and graduate students in the biotechnological industries. - Provides fundamental and rigorous scientific information on enzymes - Illustrates enzymes as tools to achieve value and quality to a product, either in vitro or in vivo - Presents the most updated knowledge in the area of food biotechnology - Demonstrates novel horizons and potential for the use of enzymes in industrial applications
Fully updated and expanded-a solid foundation for understandingexperimental enzymology. This practical, up-to-date survey is designed for a broadspectrum of biological and chemical scientists who are beginning todelve into modern enzymology. Enzymes, Second Editionexplains the structural complexities of proteins and enzymes andthe mechanisms by which enzymes perform their catalytic functions.The book provides illustrative examples from the contemporaryliterature to guide the reader through concepts and data analysisprocedures. Clear, well-written descriptions simplify the complexmathematical treatment of enzyme kinetic data, and numerouscitations at the end of each chapter enable the reader to accessthe primary literature and more in-depth treatments of specifictopics. This Second Edition of Enzymes: A Practical Introductionto Structure, Mechanism, and Data Analysis features refinedand expanded coverage of many concepts, while retaining theintroductory nature of the book. Important new featuresinclude: A new chapter on protein-ligand binding equilibria Expanded coverage of chemical mechanisms in enzyme catalysisand experimental measurements of enzyme activity Updated and refined discussions of enzyme inhibitors andmultiple substrate reactions Coverage of current practical applications to the study ofenzymology Supplemented with appendices providing contact information forsuppliers of reagents and equipment for enzyme studies, as well asa survey of useful Internet sites and computer software forenzymatic data analysis, Enzymes, Second Edition isthe ultimate practical guide for scientists and students inbiochemical, pharmaceutical, biotechnical, medicinal, andagricultural/food-related research.
The secretions of the exocrine pancreas provide for digestion of a meal into components that are then available for processing and absorption by the intestinal epithelium. Without the exocrine pancreas, malabsorption and malnutrition result. This chapter describes the cellular participants responsible for the secretion of digestive enzymes and fluid that in combination provide a pancreatic secretion that accomplishes the digestive functions of the gland. Key cellular participants, the acinar cell and the duct cell, are responsible for digestive enzyme and fluid secretion, respectively, of the exocrine pancreas. This chapter describes the neurohumoral pathways that mediate the pancreatic response to a meal as well as details of the cellular mechanisms that are necessary for the organ responses, including protein synthesis and transport and ion transports, and the regulation of these responses by intracellular signaling systems. Examples of pancreatic diseases resulting from dysfunction in cellular mechanisms provide emphasis of the importance of the normal physiologic mechanisms.
Enzymes in Food Biotechnology: Production, Applications, and Future Prospects presents a comprehensive review of enzyme research and the potential impact of enzymes on the food sector. This valuable reference brings together novel sources and technologies regarding enzymes in food production, food processing, food preservation, food engineering and food biotechnology that are useful for researchers, professionals and students. Discussions include the process of immobilization, thermal and operational stability, increased product specificity and specific activity, enzyme engineering, implementation of high-throughput techniques, screening to relatively unexplored environments, and the development of more efficient enzymes. - Explores recent scientific research to innovate novel, global ideas for new foods and enzyme engineering - Provides fundamental and advanced information on enzyme research for use in food biotechnology, including microbial, plant and animal enzymes - Includes recent cutting-edge research on the pharmaceutical uses of enzymes in the food industry
Recent developments in genetic engineering and protein chemistry are bringing ever more powerful means of analysis to bear on the study of enzyme structure. This volume reviews the most important types of industrial enzymes. In a balanced manner it covers three interrelated aspects of paramount importance for enzyme performance: three-dimensional protein structure, physicochemical and catalytic properties, and the range of both classical and novel applications.
The three-dimensional structure of proteins -- Chemical catalysis -- The basic equations of enzyme kinetics -- Measurement and magnitude of individual rate constants -- The pH dependence of enzyme catalysis -- Practical methods for kinetics and equilibria -- Detection of intermediates in enzymatic reactions -- Stereochemistry of enzymatic reactions -- Active-site-directed and enzyme-activated irreversible inhibitors : "affinity labels" and "suicide inhibitors" -- Conformational change, allosteric regulation, motors, and work -- Forces between molecules, and binding energies -- Enzyme-substrate complementarity and the use of binding energy in catalysis -- Specificity and editing mechanisms -- Recombinant DNA technology -- Protein engineering -- Case studies of enzyme structure and mechanism -- Protein stability -- Kinetics of protein folding -- Folding pathways and energy landscapes.