Miniaturization and high precision are rapidly becoming a requirement for many industrial processes and products. As a result, there is greater interest in the use of laser microfabrication technology to achieve these goals. This book composed of 16 chapters covers all the topics of laser precision processing from fundamental aspects to industrial applications to both inorganic and biological materials. It reviews the sate of the art of research and technological development in the area of laser processing.
Laser assisted fabrication involves shaping of materials using laser as a source of heat. It can be achieved by removal of materials (laser assisted cutting, drilling, etc.), deformation (bending, extrusion), joining (welding, soldering) and addition of materials (surface cladding or direct laser cladding). This book on ́Laser assisted Fabrication’ is aimed at developing in-depth engineering concepts on various laser assisted macro and micro-fabrication techniques with the focus on application and a review of the engineering background of different micro/macro-fabrication techniques, thermal history of the treated zone and microstructural development and evolution of properties of the treated zone.
This book shares insights on post-processing techniques adopted to achieve precision-grade surfaces of additive manufactured metals including material characterization techniques and the identified material properties. Post-processes are discussed from support structure removal and heat treatment to the material removal processes including hybrid manufacturing. Also discussed are case studies on unique applications of additive manufactured metals as an exemplary of the considerations taken during post-processing design and selection. Addresses the critical aspect of post-processing for metal additive manufacturing Provides systematic introduction of pertinent materials Demonstrates post-process technique selection with the enhanced understanding of material characterization methods and evaluation Includes in-depth validation of ultra-precision machining technology Reviews precision fabrication of industrial-grade titanium alloys, steels, and aluminium alloys, with additive manufacturing technology The book is aimed at researchers, professionals, and graduate students in advanced manufacturing, additive manufacturing, machining, and materials processing.
Discusses the basic physical principles underlying the technology instrumentation of photonics This volume discusses photonics technology and instrumentation. The topics discussed in this volume are: Communication Networks; Data Buffers; Defense and Security Applications; Detectors; Fiber Optics and Amplifiers; Green Photonics; Instrumentation and Metrology; Interferometers; Light-Harvesting Materials; Logic Devices; Optical Communications; Remote Sensing; Solar Energy; Solid-State Lighting; Wavelength Conversion Comprehensive and accessible coverage of the whole of modern photonics Emphasizes processes and applications that specifically exploit photon attributes of light Deals with the rapidly advancing area of modern optics Chapters are written by top scientists in their field Written for the graduate level student in physical sciences; Industrial and academic researchers in photonics, graduate students in the area; College lecturers, educators, policymakers, consultants, Scientific and technical libraries, government laboratories, NIH.
Current Techniques in Small Animal Surgery, Fifth Edition provides current information regarding surgical techniques from the perspective of clinicians who are performing specific procedures on a regular basis. It is intended to be concise, well illustrated, and reflective of the writer’s experience, both good and bad. The emphasis with this volume is technique. The pathophysiologic priniciples and applications are covered in the companion volume, Mechanisms of Disease in Small Animal Surgery, Third Edition. These two books are regarded by most practitioners and students as being a two-volume set.
Over the past few decades, the rapid development of ultrafast lasers, such as femtosecond lasers and picosecond lasers, has opened up new avenues for material processing due to their unique features such as ultrashort pulse width and extremely high peak intensity. These techniques have become a common tool for micro- and nanoprocessing of a variety
Presented here are 130 refereed papers given at the 36th MATADOR Conference held at The University of Manchester in July 2010. The MATADOR series of conferences covers the topics of Manufacturing Automation and Systems Technology, Applications, Design, Organisation and Management, and Research. The proceedings of this Conference contain original papers contributed by researchers from many countries on different continents. The papers cover the principles, techniques and applications in aerospace, automotive, biomedical, energy, consumable goods and process industries. The papers in this volume reflect: • the importance of manufacturing to international wealth creation; • the emerging fields of micro- and nano-manufacture; • the increasing trend towards the fabrication of parts using lasers; • the growing demand for precision engineering and part inspection techniques; and • the changing trends in manufacturing within a global environment.
The use of lasers in the processing of electronic and photonic material is becoming increasingly widespread, with technological advances reducing costs and increasing both the quality and range of novel devices which can be produced. Laser growth and processing of photonic devices is the first book to review this increasingly important field.Part one investigates laser-induced growth of materials and surface structures, with pulsed laser deposition techniques, the formation of nanocones and the fabrication of periodic photonic microstructures explored in detail. Laser-induced three-dimensional micro- and nano-structuring are the focus of part two. Exploration of multiphoton lithography, processing and fabrication is followed by consideration of laser-based micro- and nano-fabrication, laser-induced soft matter organization and microstructuring, and laser-assisted polymer joining methods. The book concludes in part three with an investigation into laser fabrication and manipulation of photonic structures and devices. Laser seeding and thermal processing of glass with nanoscale resolution, laser-induced refractive index manipulation, and the thermal writing of photonic devices in glass and polymers are all considered.With its distinguished editor and international team of expert contributors, Laser growth and processing of photonic devices is an essential tool for all materials scientists, engineers and researchers in the microelectronics industry. - The first book to review the increasingly important field of laser growth and processing of photonic devices - Investigates laser-induced growth of materials and surface structures, pulsed laser deposition techniques, the formation of nanocones and the fabrication of periodic photonic microstructures - Examines laser-induced three-dimensional micro- and nano-structuring and concludes with an investigation into laser fabrication and manipulation of photonic structures and devices
Laser processing of solid materials has been commonly performed in gas ambient. Having the workpiece immersed into liquid, having a liquid film on it, or soaking the material with liquid gives several advantages such as removal of the debris, lowering the heat load on the workpiece, and confining the vapour and plasma, resulting in higher shock pressure on the surface. Introduced in the 1980s, neutral liquids assisted laser processing (LALP) has proved to be advantageous in the cutting of heat-sensitive materials, shock peening of machine parts, cleaning of surfaces, fabrication of micro-optical components, and for generation of nanoparticles in liquids. The liquids used range from water through organic solvents to cryoliquids. The primary aim of Handbook of Liquids-Assisted Laser Processing is to present the essentials of previous research (tabulated data of experimental conditions and results), and help researchers develop new processing and diagnostics techniques (presenting data of liquids and a review of physical phenomena associated with LALP). Engineers can use the research results and technological innovation information to plan their materials processing tasks. Laser processing in liquids has been applied to a number of different tasks in various fields such as mechanical engineering, microengineering, chemistry, optics, and bioscience. A comprehensive glossary with definitions of the terms and explanations has been added. The book covers the use of chemically inert liquids under normal conditions. Laser chemical processing examples are presented for comparison only. - First book in this rapidly growing field impacting mechanical and micro/nano-engineering - Covers different kinds of liquid-assisted laser processing of a large variety of materials - Covers lasers emitting from UV to IR with pulse lengths down to femtoseconds - Reviews over 500 scientific articles and 300 inventions and tabulates their main features - Gives a qualitative and quantitative description of the physical phenomena associated with LALP - Tabulates 61 parameters for 100 liquids - Glossary of over 200 terms and abbreviations