Introduction to Focused Ion Beams

Introduction to Focused Ion Beams

Author: Lucille A. Giannuzzi

Publisher: Springer Science & Business Media

Published: 2006-05-18

Total Pages: 362

ISBN-13: 038723313X

DOWNLOAD EBOOK

Introduction to Focused Ion Beams is geared towards techniques and applications. This is the only text that discusses and presents the theory directly related to applications and the only one that discusses the vast applications and techniques used in FIBs and dual platform instruments.


High Resolution Focused Ion Beams: FIB and its Applications

High Resolution Focused Ion Beams: FIB and its Applications

Author: Jon Orloff

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 304

ISBN-13: 1461507650

DOWNLOAD EBOOK

In this book, we have attempted to produce a reference on high resolution focused ion beams (FIBs) that will be useful for both the user and the designer of FIB instrumentation. We have included a mix of theory and applications that seemed most useful to us. The field of FIBs has advanced rapidly since the application of the first field emission ion sources in the early 1970s. The development of the liquid metal ion source (LMIS) in the late 1960s and early 1970s and its application for FIBs in the late 1970s have resulted in a powerful tool for research and for industry. There have been hundreds of papers written on many aspects of LMIS and FIBs, and a useful and informative book on these subjects was published in 1991 by Phil Prewett and Grame Mair. Because there have been so many new applications and uses found for FIBs in the last ten years we felt that it was time for another book on the subject.


Nanofabrication Using Focused Ion and Electron Beams

Nanofabrication Using Focused Ion and Electron Beams

Author: Ivo Utke

Publisher: Oxford University Press

Published: 2012-03-05

Total Pages: 830

ISBN-13: 0199920990

DOWNLOAD EBOOK

Nanofabrication Using Focused Ion and Electron Beams presents fundamentals of the interaction of focused ion and electron beams (FIB/FEB) with surfaces, as well as numerous applications of these techniques for nanofabrication involving different materials and devices. The book begins by describing the historical evolution of FIB and FEB systems, applied first for micro- and more recently for nanofabrication and prototyping, practical solutions available in the market for different applications, and current trends in development of tools and their integration in a fast growing field of nanofabrication and nanocharacterization. Limitations of the FIB/FEB techniques, especially important when nanoscale resolution is considered, as well as possible ways to overcome the experimental difficulties in creating new nanodevices and improving resolution of processing, are outlined. Chapters include tutorials describing fundamental aspects of the interaction of beams (FIB/FEB) with surfaces, nanostructures and adsorbed molecules; electron and ion beam chemistries; basic theory, design and configuration of equipment; simulations of processes; basic solutions for nanoprototyping. Emerging technologies as processing by cluster beams are also discussed. In addition, the book considers numerous applications of these techniques (milling, etching, deposition) for nanolithography, nanofabrication and characterization, involving different nanostructured materials and devices. Its main focus is on practical details of using focused ion and electron beams with gas assistance (deposition and etching) and without gas assistance (milling/cutting) for fabrication of devices from the fields of nanoelectronics, nanophotonics, nanomagnetics, functionalized scanning probe tips, nanosensors and other types of NEMS (nanoelectromechanical systems). Special attention is given to strategies designed to overcome limitations of the techniques (e.g., due to damaging produced by energetic ions interacting with matter), particularly those involving multi-step processes and multi-layer materials. Through its thorough demonstration of fundamental concepts and its presentation of a wide range of technologies developed for specific applications, this volume is ideal for researches from many different disciplines, as well as engineers and professors in nanotechnology and nanoscience.


Electron and Ion Optics

Electron and Ion Optics

Author: Miklos Szilagyi

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 550

ISBN-13: 1461309239

DOWNLOAD EBOOK

The field of electron and ion optics is based on the analogy between geometrical light optics and the motion of charged particles in electromagnetic fields. The spectacular development of the electron microscope clearly shows the possibilities of image formation by charged particles of wavelength much shorter than that of visible light. As new applications such as particle accelerators, cathode ray tubes, mass and energy spectrometers, microwave tubes, scanning-type analytical instruments, heavy beam technologies, etc. emerged, the scope of particle beam optics has been exten ded to the formation of fine probes. The goal is to concentrate as many particles as possible in as small a volume as possible. Fabrication of microcircuits is a good example of the growing importance of this field. The current trend is towards increased circuit complexity and pattern density. Because of the diffraction limitation of processes using optical photons and the technological difficulties connected with x-ray processes, charged particle beams are becoming popular. With them it is possible to write directly on a wafer under computer control, without using a mask. Focused ion beams offer especially great possibilities in the submicron region. Therefore, electron and ion beam technologies will most probably playa very important role in the next twenty years or so.


Modern Electron Microscopy in Physical and Life Sciences

Modern Electron Microscopy in Physical and Life Sciences

Author: Milos Janecek

Publisher: BoD – Books on Demand

Published: 2016-02-18

Total Pages: 302

ISBN-13: 9535122525

DOWNLOAD EBOOK

This book brings a broad review of recent global developments in theory, instrumentation, and practical applications of electron microscopy. It was created by 13 contributions from experts in different fields of electron microscopy and technology from over 20 research institutes worldwide.


Focused Ion Beam Systems

Focused Ion Beam Systems

Author: Nan Yao

Publisher: Cambridge University Press

Published: 2007-09-13

Total Pages: 496

ISBN-13: 1107320569

DOWNLOAD EBOOK

The focused ion beam (FIB) system is an important tool for understanding and manipulating the structure of materials at the nanoscale. Combining this system with an electron beam creates a DualBeam - a single system that can function as an imaging, analytical and sample modification tool. Presenting the principles, capabilities, challenges and applications of the FIB technique, this edited volume, first published in 2007, comprehensively covers the ion beam technology including the DualBeam. The basic principles of ion beam and two-beam systems, their interaction with materials, etching and deposition are all covered, as well as in situ materials characterization, sample preparation, three-dimensional reconstruction and applications in biomaterials and nanotechnology. With nanostructured materials becoming increasingly important in micromechanical, electronic and magnetic devices, this self-contained review of the range of ion beam methods, their advantages, and when best to implement them is a valuable resource for researchers in materials science, electrical engineering and nanotechnology.


Ion Beam Applications

Ion Beam Applications

Author: Ishaq Ahmad

Publisher: BoD – Books on Demand

Published: 2018-07-18

Total Pages: 190

ISBN-13: 178923414X

DOWNLOAD EBOOK

Ion beam of various energies is a standard research tool in many areas of science, from basic physics to diverse areas in space science and technology, device fabrications, materials science, environment science, and medical sciences. It is an advance and versatile tool to frequently discover applications across a broad range of disciplines and fields. Moreover, scientists are continuously improving the ion beam sources and accelerators to explore ion beam at the forefront of scientific endeavours. This book provides a glance view on MeV ion beam applications, focused ion beam generation and its applications as well as practical applications of ion implantation.


FIB Nanostructures

FIB Nanostructures

Author: Zhiming M. Wang

Publisher: Springer Science & Business Media

Published: 2014-01-04

Total Pages: 536

ISBN-13: 331902874X

DOWNLOAD EBOOK

FIB Nanostructures reviews a range of methods, including milling, etching, deposition, and implantation, applied to manipulate structures at the nanoscale. Focused Ion Beam (FIB) is an important tool for manipulating the structure of materials at the nanoscale, and substantially extends the range of possible applications of nanofabrication. FIB techniques are widely used in the semiconductor industry and in materials research for deposition and ablation, including the fabrication of nanostructures such as nanowires, nanotubes, nanoneedles, graphene sheets, quantum dots, etc. The main objective of this book is to create a platform for knowledge sharing and dissemination of the latest advances in novel areas of FIB for nanostructures and related materials and devices, and to provide a comprehensive introduction to the field and directions for further research. Chapters written by leading scientists throughout the world create a fundamental bridge between focused ion beam and nanotechnology that is intended to stimulate readers' interest in developing new types of nanostructures for application to semiconductor technology. These applications are increasingly important for the future development of materials science, energy technology, and electronic devices. The book can be recommended for physics, electrical engineering, and materials science departments as a reference on materials science and device design.


In-situ Electron Microscopy at High Resolution

In-situ Electron Microscopy at High Resolution

Author: Florian Banhart

Publisher: World Scientific

Published: 2008

Total Pages: 318

ISBN-13: 9812797335

DOWNLOAD EBOOK

In-situ high-resolution electron microscopy is a modern and powerful technique in materials research, physics, and chemistry. In-situ techniques are hardly treated in textbooks of electron microscopy. Thus, there is a need to collect the present knowledge about the techniques and achievements of in-situ electron microscopy in one book. Since high-resolution electron microscopes are available in most modern laboratories of materials science, more and more scientists or students are starting to work on this subject.In this comprehensive volume, the most important techniques and achievements of in-situ high-resolution electron microscopy will be reviewed by renowned experts. Applications in several fields of materials science will also be demonstrated.


Three-Dimensional Electron Microscopy

Three-Dimensional Electron Microscopy

Author:

Publisher: Academic Press

Published: 2019-07-18

Total Pages: 306

ISBN-13: 0128170190

DOWNLOAD EBOOK

Three-Dimensional Electron Microscopy, Volume 152 in the Methods in Cell Biology series, highlights new advances in the field, with this new volume presenting interesting chapters focusing on FIB-SEM of mouse nervous tissue: fast and slow sample preparation, Serial-section electron microscopy using ATUM - Automated Tape collecting Ultra-Microtome, Software for automated acquisition of electron tomography tilt series, Scanning electron tomography of biological samples embedded in plastic, Cryo-STEM tomography for Biology, CryoCARE: Content-aware denoising of cryo-EM images and tomograms using artificial neural networks, Expedited large-volume 3-D SEM workflows for comparative vertebrate microanatomical imaging, and many other interesting topics. - Provides the authority and expertise of leading contributors from an international board of authors - Presents the latest release in the Methods in Cell Biology series - Includes the latest information on the Three-Dimensional Electron Microscopy technique