Foam Engineering

Foam Engineering

Author: Paul Stevenson

Publisher: John Wiley & Sons

Published: 2012-01-03

Total Pages: 514

ISBN-13: 1119961092

DOWNLOAD EBOOK

Containing contributions from leading academic and industrial researchers, this book provides a much needed update of foam science research. The first section of the book presents an accessible summary of the theory and fundamentals of foams. This includes chapters on morphology, drainage, Ostwald ripening, coalescence, rheology, and pneumatic foams. The second section demonstrates how this theory is used in a wide range of industrial applications, including foam fractionation, froth flotation and foam mitigation. It includes chapters on suprafroths, flotation of oil sands, foams in enhancing petroleum recovery, Gas-liquid Mass Transfer in foam, foams in glass manufacturing, fire-fighting foam technology and consumer product foams. Key features: Foam fractionation is an exciting and emerging technology, starting to gain significant attention Discusses a vital topic for many industries, especially mineral processing, petroleum engineering, bioengineering, consumer products and food sector Links foam science theory to industrial applications, making it accessible to an engineering science audience Summarizes the latest developments in this rapidly progressing area of research Contains contributions from leading international researchers from academia and industry


Polymer Foams Handbook

Polymer Foams Handbook

Author: Nigel Mills

Publisher: Butterworth-Heinemann

Published: 2007-03-23

Total Pages: 562

ISBN-13: 9780080475448

DOWNLOAD EBOOK

From crash helmets to packaging, this is the complete guide to understanding, selecting, processing and working with polymer foams.


Polymeric Foams Structure-Property-Performance

Polymeric Foams Structure-Property-Performance

Author: Bernard Obi

Publisher: William Andrew

Published: 2017-12-07

Total Pages: 412

ISBN-13: 1455777560

DOWNLOAD EBOOK

Polymeric Foams Structure–Property–Performance: A Design Guide is a response to the design challenges faced by engineers in a growing market with evolving standards, new regulations, and an ever-increasing variety of application types for polymeric foam. Bernard Obi, an author with wide experience in testing, characterizing, and applying polymer foams, approaches this emerging complexity with a practical design methodology that focuses on understanding the relationship between structure–properties of polymeric foams and their performance attributes. The book not only introduces the fundamentals of polymer and foam science and engineering, but also goes more in-depth, covering foam processing, properties, and uses for a variety of applications. By connecting the diverse technologies of polymer science to those from foam science, and by linking both micro- and macrostructure–property relationships to key performance attributes, the book gives engineers the information required to solve pressing design problems involving the use of polymeric foams and to optimize foam performance. With a focus on applications in the automotive and transportation industries, as well as uses of foams in structural composites for lightweight applications, the author provides numerous case studies and design examples of real-life industrial problems from various industries and their solutions. Provides the science and engineering fundamentals relevant for solving polymer foam application problems Offers an exceptionally practical methodology to tackle the increasing complexity of real-world design challenges faced by engineers working with foams Discusses numerous case studies and design examples, with a focus on automotive and transportation Utilizes a practical design methodology focused on understanding the relationship between structure-properties of polymeric foams and their performance attributes


Metal Foams: A Design Guide

Metal Foams: A Design Guide

Author: Michael F. Ashby

Publisher: Elsevier

Published: 2000-07-30

Total Pages: 251

ISBN-13: 0080511465

DOWNLOAD EBOOK

Metal foams are at the forefront of technological development for the automotive, aerospace, and other weight-dependent industries. They are formed by various methods, but the key facet of their manufacture is the inclusion of air or other gaseous pockets in the metal structure. The fact that gas pockets are present in their structure provides an obvious weight advantage over traditionally cast or machined solid metal components. The unique structure of metal foams also opens up more opportunities to improve on more complex methods of producing parts with space inclusions such as sand-casting. This guide provides information on the advantages metal foams possess, and the applications for which they may prove suitable. Offers a concise description of metal foams, their manufacture, and their advantages in industry Provides engineers with answers to pertinent questions surrounding metal foams Satisfies a major need in the market for information on the properties, performance, and applications of these materials


Foams

Foams

Author: J.J. Bikerman

Publisher: Springer Science & Business Media

Published: 2013-06-29

Total Pages: 344

ISBN-13: 3642867340

DOWNLOAD EBOOK

The book Foams: Theory and Industrial Applications, written by the undersigned and three collaborators and published in 1953, is still the only monograph on liquid foam in the English language. Naturally the science of foams had advanced in the intervening years so that a practically new book had to be prepared to give justice to the present state of our know ledge. This monograph has only one author and does not deal with solid foams, fire-fighting foams, and flotation, on which information is available elsewhere. The other applications of foam and its fundamental properties are reviewed at length and, whenever possible, attempts are made to reach the truth through a maze of conflicting evidence. February 1973 J. J. BIKERMAN Contents page Preface . v 1. General. Foam Films (Sections 1-22) 1 Foam Films 5 References 30 2. Formation and Structure (Sections 23-42) 33 Dispersion Methods 33 Condensation Methods 51 Foam Structure 59 References 62 3. Measurement of Foaminess (Sections 43-62) 65 Films and Bubbles 66 Foams. 76 References 94 4. Results of Foaminess Measurements (Sections 63-84) . 98 Poorly Foaming Liquids . 98 Strongly Foaming Liquids 108 Other Systems 132 References 140 5. Three-phase Foams (Sections 85-90) 149 References 157 6. Foam Drainage (Sections 91-106) 159 Experimental Data . 173 References 181 7. Mechanical Properties of Foams (Sections 107-122) 184 References 211 8. Optical Properties of Foams (Sections 123 -127) . 214 References 222 vii viii Contents 9.


Metallic Foam Bone

Metallic Foam Bone

Author: Cuie Wen

Publisher: Woodhead Publishing

Published: 2016-11-14

Total Pages: 262

ISBN-13: 008101290X

DOWNLOAD EBOOK

Metallic Foam Bone: Processing, Modification and Characterization and Properties examines the use of porous metals as novel bone replacement materials. With a strong focus on materials science and clinical applications, the book also examines the modification of metals to ensure their biocompatibility and efficacy in vivo. Initial chapters discuss processing and production methods of metals for tissue engineering and biomedical applications that are followed by topics on practical applications in orthopedics and dentistry. Finally, the book addresses the surface science of metallic foam and how it can be tailored for medical applications. This book is a valuable resource for materials scientists, biomedical engineers, and clinicians with an interest in innovative biomaterials for orthopedic and bone restoration. Introduces biomaterials researchers to a promising, rapidly developing technology for replacing hard tissue Increases familiarity with a range of technologies, enabling materials scientists and engineers to improve the material properties of porous metals Explores the clinical applications of metal foams in orthopedics and dentistry


Foam Fractionation

Foam Fractionation

Author: Paul Stevenson

Publisher: CRC Press

Published: 2014-02-13

Total Pages: 208

ISBN-13: 1466558512

DOWNLOAD EBOOK

Foam fractionation is a separation process in which proteins and other amphipathic species adsorb to the surface of bubbles. The bubbles are then removed from the solution in the form of foam at the top of a column. Due to its cost-effectiveness, foam fractionation has the potential for rapid commercial growth, especially in biotechnology. To assist in the widespread adoption of this highly affordable yet powerful process, Foam Fractionation: Principles and Process Design: Provides a systematic explanation of the underlying physics of foam fractionation Discusses the fundamentals of molecular adsorption to gas liquid interfaces and the dynamics of foam Describes foam fractionation process intensification strategies Supplies design guidance for plant-scale installations Contains the latest knowledge of foam fractionation transport processes Presents a case study of the world’s largest commercial foam fractionation plant producing the food preservative Nisin Foam Fractionation: Principles and Process Design capitalizes on the authors’ extensive practical experience of foam fractionation and allied processes to give process engineers, industrial designers, chemical engineers, academics, and graduate students alike a greater understanding of the mechanistic basis and real-world applications of foam fractionation.


Biomedical Foams for Tissue Engineering Applications

Biomedical Foams for Tissue Engineering Applications

Author: Paolo Netti

Publisher: Elsevier

Published: 2014-02-28

Total Pages: 449

ISBN-13: 0857097032

DOWNLOAD EBOOK

Biomedical foams are a new class of materials, which are increasingly being used for tissue engineering applications. Biomedical Foams for Tissue Engineering Applications provides a comprehensive review of this new class of materials, whose structure can be engineered to meet the requirements of nutrient trafficking and cell and tissue invasion, and to tune the degradation rate and mechanical stability on the specific tissue to be repaired. Part one explores the fundamentals, properties, and modification of biomedical foams, including the optimal design and manufacture of biomedical foam pore structure for tissue engineering applications, biodegradable biomedical foam scaffolds, tailoring the pore structure of foam scaffolds for nerve regeneration, and tailoring properties of polymeric biomedical foams. Chapters in part two focus on tissue engineering applications of biomedical foams, including the use of bioactive glass foams for tissue engineering applications, bioactive glass and glass-ceramic foam scaffolds for bone tissue restoration, composite biomedical foams for engineering bone tissue, injectable biomedical foams for bone regeneration, polylactic acid (PLA) biomedical foams for tissue engineering, porous hydrogel biomedical foam scaffolds for tissue repair, and titanium biomedical foams for osseointegration. Biomedical Foams for Tissue Engineering Applications is a technical resource for researchers and developers in the field of biomaterials, and academics and students of biomedical engineering and regenerative medicine. Explores the fundamentals, properties, and modification of biomedical foams Includes intense focus on tissue engineering applications of biomedical foams A technical resource for researchers and developers in the field of biomaterials, and academics and students of biomedical engineering and regenerative medicine


Foam Extrusion

Foam Extrusion

Author: S.-T. Lee

Publisher: CRC Press

Published: 2014-04-07

Total Pages: 636

ISBN-13: 1439898596

DOWNLOAD EBOOK

Combining the science of foam with the engineering of extrusion processes, Foam Extrusion: Principles and Practice delivers a detailed discussion of the theory, design, processing, and application of degradable foam extraction. In one comprehensive volume, the editors present the collective expertise of leading academic, research, and industry specialists while laying the scientific foundation in such a manner that the microscopic transition from a nucleus to a void (nucleation) and macroscopic movement from a void to an object (formation) are plausibly addressed. To keep pace with significant improvements in foam extrusion technology, this Second Edition: Includes new chapters on the latest developments in processing/thermal management, rheology/melt strength, and biodegradable and sustainable foams Features extensive updates to chapters on extrusion equipment, blowing agents, polyethylene terephthalate (PET) foam, and microcellular innovation Contains new coverage of cutting-edge foaming mechanisms and technology, as well as new case studies, examples, and figures Capturing the interesting evolution of the field, Foam Extrusion: Principles and Practice, Second Edition provides scientists, engineers, and product development professionals with a modern, holistic view of foam extrusion to enhance research and development and aid in the selection of the optimal screw, die design, and foaming system.


Foam Fractionation

Foam Fractionation

Author: Paul Stevenson

Publisher: CRC Press

Published: 2014-02-13

Total Pages: 204

ISBN-13: 1466558520

DOWNLOAD EBOOK

Foam fractionation is a separation process in which proteins and other amphipathic species adsorb to the surface of bubbles. The bubbles are then removed from the solution in the form of foam at the top of a column. Due to its cost-effectiveness, foam fractionation has the potential for rapid commercial growth, especially in biotechnology.To assist