Flux Pinning in Superconductors

Flux Pinning in Superconductors

Author: Teruo Matsushita

Publisher: Springer Science & Business Media

Published: 2007-07-04

Total Pages: 509

ISBN-13: 3540445153

DOWNLOAD EBOOK

The book deals with the flux pinning mechanisms and properties and the electromagnetic phenomena caused by the flux pinning common for metallic, high-temperature and MgB2 superconductors. The loss originates from the ohmic dissipation of normal electrons in the normal core driven by the electric field induced by the flux motion. Readers will learn why the resultant loss is of hysteresis type in spite of such mechanism.


Flux Pinning in Superconductors

Flux Pinning in Superconductors

Author: Teruo Matsushita

Publisher: Springer Nature

Published: 2022-08-31

Total Pages: 506

ISBN-13: 3030946398

DOWNLOAD EBOOK

This book covers the flux pinning mechanisms and properties and the electromagnetic phenomena caused by the flux pinning common for metallic, high-Tc and MgB2 superconductors. The condensation energy interaction known for normal precipitates or grain boundaries and the kinetic energy interaction proposed for artificial Nb pins in Nb-Ti, etc., are introduced for the pinning mechanism. Summation theories to derive the critical current density are discussed in detail. Irreversible magnetization and AC loss caused by the flux pinning are also discussed. The loss originally stems from the ohmic dissipation of normal electrons in the normal core driven by the electric field induced by the flux motion. The influence of the flux pinning on the vortex phase diagram in high Tc superconductors is discussed, and the dependencies of the irreversibility field are also described on other quantities such as anisotropy of superconductor, specimen size and electric field strength. Recent developments of critical current properties in various high-Tc superconductors and MgB2 are introduced. The 3rd edition has been thoroughly updated, with a new chapter on critical state model. The mechanism of irreversible properties is discussed in detail. The author provides calculations of pinning loss by the equation of motion of flux lines in the pinning potential and hysteresis loss. The readers will learn why the resultant loss is of hysteresis type in spite of such mechanism. This book aims for graduate students and researchers studying superconductivity as well as engineers working in electric utility industry.


Melt Processed High Temperature Superconductors

Melt Processed High Temperature Superconductors

Author: Masato Murakami

Publisher: World Scientific

Published: 1993-01-12

Total Pages: 380

ISBN-13: 9814505005

DOWNLOAD EBOOK

The achievement of large critical currents is critical to the applications of high-temperature superconductors. Recent developments have shown that melt processing is suitable for producing high Jc oxide superconductors. Using magnetic forces between such high Jc oxide superconductors and magnets, a person could be levitated.This book has grown largely out of research works on melt processing of high-temperature superconductors conducted at ISTEC Superconductivity Research Laboratory. The chapters build on melt processing, microstructural characterization, fundamentals of flux pinning, critical current, and applications of bulk monolithic superconductors. The text also describes the basic mechanism of levitation and its application. This book will be useful for research workers, engineers, and graduate students in the field of superconductivity.List of Authors: H Fujimoto, S Gotoh, T Izumi; N Koshizuka, K Miya, M Murakami, N Nakamura, Y Nakamura, Y Shiohara, H Takaichi, T Taguchi, M Uesaka, H W Weber, K Yamaguchi.


Superconductivity

Superconductivity

Author: Charles P. Poole

Publisher: Elsevier

Published: 2010-07-20

Total Pages: 671

ISBN-13: 0080550487

DOWNLOAD EBOOK

Superconductivity, 2E is an encyclopedic treatment of all aspects of the subject, from classic materials to fullerenes. Emphasis is on balanced coverage, with a comprehensive reference list and significant graphicsfrom all areas of the published literature. Widely used theoretical approaches are explained in detail. Topics of special interest include high temperature superconductors, spectroscopy, critical states, transport properties, and tunneling.This book covers the whole field of superconductivity from both the theoretical and the experimental point of view. - Comprehensive coverage of the field of superconductivity - Very up-to date on magnetic properties, fluxons, anisotropies, etc. - Over 2500 references to the literature - Long lists of data on the various types of superconductors


Introduction to High-Temperature Superconductivity

Introduction to High-Temperature Superconductivity

Author: Thomas Sheahen

Publisher: Springer Science & Business Media

Published: 2006-02-24

Total Pages: 578

ISBN-13: 0306470616

DOWNLOAD EBOOK

Drawing from physics, mechanical engineering, electrical engineering, ceramics, and metallurgy, high-temperature superconductivity (HTSC) spans nearly the entire realm of materials science. This volume presents each of those disciplines at an introductory level, such that readers will ultimately be able to read the literature in the field.


High-Temperature Superconductors

High-Temperature Superconductors

Author: Ajay Kumar Saxena

Publisher: Springer Science & Business Media

Published: 2012-07-10

Total Pages: 266

ISBN-13: 3642284817

DOWNLOAD EBOOK

This book presents the current knowledge about superconductivity in high Tc cuprate superconductors. There is a large scientific interest and great potential for technological applications. The book discusses all the aspects related to all families of cuprate superconductors discovered so far. Beginning with the phenomenon of superconductivity, the book covers: the structure of cuprate HTSCs, critical currents, flux pinning, synthesis of HTSCs, proximity effect and SQUIDs, possible applications of high Tc superconductors and theories of superconductivity. Though a high Tc theory is still awaited, this book describes the present scenario and BCS and RVB theories. The second edition was significantly extended by including film-substrate lattice matching and buffer layer considerations in thin film HTSCs, brick-wall microstructure in the epitaxial films, electronic structure of the CuO2 layer in cuprates, s-wave and d-wave coupling in HTSCs and possible scenarios of theories of high Tc superconductivity.


Materials Science in Static High Magnetic Fields

Materials Science in Static High Magnetic Fields

Author: Watanabe Kyoko

Publisher: Springer Science & Business Media

Published: 2012-12-06

Total Pages: 330

ISBN-13: 3642563120

DOWNLOAD EBOOK

Presents the most comprehensive review of the influence of highly intense magnetic fields on materials of various classes.


Advances in Cryogenic Engineering Materials

Advances in Cryogenic Engineering Materials

Author: Richard P. Reed

Publisher: Springer Science & Business Media

Published: 2013-11-11

Total Pages: 1450

ISBN-13: 1475790538

DOWNLOAD EBOOK

Proceedings of the Tenth International Cryogenic Materials Conference (ICMC) held in Albuquerque, New Mexico, July 12-16, 1993.


Models and Phenomenology for Conventional and High-temperature Superconductivity

Models and Phenomenology for Conventional and High-temperature Superconductivity

Author: Giuseppe Iadonisi

Publisher: IOS Press

Published: 1998

Total Pages: 606

ISBN-13: 9789051994667

DOWNLOAD EBOOK

The search for microscopic models to explain the many superconducting substances has introduced seminal concepts and techniques in many-body physics and in statistical mechanics. The complexity of the high-temperature superconductors has required a remarkable refinement of experimental techniques in order to allow a reliable characterization of the samples, and is partly the reason why so many different microscopic models have so far been proposed. This Enrico Fermi Course on Superconductivity was provided an up-to date presentation of selected experimental and theoretical theories on the (so called) conventional superconductivity and on the high temperature superconductivity. The attention was focused on those reliable measurements which are expected to provide the theory with key constraints, viz: Raman and Infrared Spectroscopy, Nuclear Spin Resonance, Angular Resolved Photoemission Spectroscopy, transport measurements, Josephson effect. The lectures devoted to the overview of the BCS theory and to the discussion of minimal models and of the crossover from BCS to Bose-Einstein condensation may be particularly useful. The remaining part of the program was shared between phonon and non-phonon based mechanisms. On the one hand, special emphasis has been devoted to the breakdown of the Migdal theorem and to polaronic theories. On the other, the book contains an overview of strongly correlated electron theories, including magnetic interactions. A survey of the physics of vortices completes the theoretical part of the lectures.