Fluid Transport in Nanoporous Materials

Fluid Transport in Nanoporous Materials

Author: Wm. Curtis Conner

Publisher: Springer Science & Business Media

Published: 2006-03-10

Total Pages: 704

ISBN-13: 9781402043802

DOWNLOAD EBOOK

This NATO ASI involved teachings and perspectives of the state-of-the-art in experimental and theoretical understandings of transport in nanoporous solids. This workshop brought together the top scientists and engineers in each area to discuss the similarities and differences in each technique and theory. The lectures truly bridge the gaps between these related areas and approaches. The applications in future separations, catalysis, the environment and energy needs are obvious. The solids comprised the newly developing molecular sieves, biological systems and polymeric solids. Transport in single particles, in membranes and in commercial applications were reviewed and analyzed, placing each in context. Techniques such as uptake, Chromatographic, Frequency Response, NMR, Neutron Scattering and Infrared spectroscopies are discussed for mixtures as well as for single components. Theoretical approaches such as Density Functional Theory, Statistical Mechanics, Molecular Dynamics and Maxwell-Stefan Theory are employed to analyze the diffusional transport in confined environments, spanning from sub-nanometers to centimetre scales. In all cases the theories are related to the experiments. These lectures present a uniquq opportunity to learn the various theoretical and experimental approaches to analyze and understand transport in nanoporous materials.


Transport of Fluids in Nanoporous Materials

Transport of Fluids in Nanoporous Materials

Author: Suresh K. Bhatia

Publisher: MDPI

Published: 2019-01-25

Total Pages: 261

ISBN-13: 303897529X

DOWNLOAD EBOOK

This book is a printed edition of the Special Issue "Transport of Fluids in Nanoporous Materials" that was published in Processes


Transport of Fluids in Nanoporous Materials

Transport of Fluids in Nanoporous Materials

Author: Suresh K. Bhatia

Publisher:

Published: 2019

Total Pages: 1

ISBN-13: 9783038975304

DOWNLOAD EBOOK

Fluid transport in narrow pores is central to the design and optimization of nanoporous materials in industrial applications, such as catalysis, nanofluids, electrochemical batteries, and membrane separation. However, due to the strong potential field in nanopores, conventional models and methods have become inadequate for predicting the transport behavior of molecules confined in the pore space. In addition, the inherent complexity of the pore structure in nanomaterials requires consideration of local or nanoscale transport at the single pore level, and averaging over the macroscale, which further impedes the application and validation of the formulated mechanical models. To solve the problem of fluid transport in narrow nanopores beyond Knudsen limits, experimental characterizations should be combined to molecular simulations in order to probe the fluid movement under realistic conditions. This book provides comprehensive perspectives on the current research in the investigation of fluid transport processes in nanomaterials. The articles from leading scholars in this field are conveniently arranged according to three categories based on the approaches used in the papers: modeling and simulation, nanomaterial manipulation and characterization, and practical application. The 14 contributions not only demonstrate the importance of fluid behavior in different applications but also address the main theories and simulations to model the fluid transport behavior in nanoporous materials. This collection shows that "fluid transport in nanomaterials" remains a versatile and vibrant topic in terms of both theories and applications.


Fluid Transport in Nanoporous Materials

Fluid Transport in Nanoporous Materials

Author: Wm. Curtis Conner

Publisher: Springer Science & Business Media

Published: 2006-03-10

Total Pages: 708

ISBN-13: 9781402043789

DOWNLOAD EBOOK

This NATO ASI involved teachings and perspectives of the state-of-the-art in experimental and theoretical understandings of transport in nanoporous solids. This workshop brought together the top scientists and engineers in each area to discuss the similarities and differences in each technique and theory. The lectures truly bridge the gaps between these related areas and approaches. The applications in future separations, catalysis, the environment and energy needs are obvious. The solids comprised the newly developing molecular sieves, biological systems and polymeric solids. Transport in single particles, in membranes and in commercial applications were reviewed and analyzed, placing each in context. Techniques such as uptake, Chromatographic, Frequency Response, NMR, Neutron Scattering and Infrared spectroscopies are discussed for mixtures as well as for single components. Theoretical approaches such as Density Functional Theory, Statistical Mechanics, Molecular Dynamics and Maxwell-Stefan Theory are employed to analyze the diffusional transport in confined environments, spanning from sub-nanometers to centimetre scales. In all cases the theories are related to the experiments. These lectures present a uniquq opportunity to learn the various theoretical and experimental approaches to analyze and understand transport in nanoporous materials.


Adsorption and Diffusion in Nanoporous Materials

Adsorption and Diffusion in Nanoporous Materials

Author: Rolando M.A. Roque-Malherbe

Publisher: CRC Press

Published: 2007-03-05

Total Pages: 290

ISBN-13: 1420046764

DOWNLOAD EBOOK

As nanomaterials get smaller, their properties increasingly diverge from their bulk material counterparts. Written from a materials science perspective, Adsorption and Diffusion in Nanoporous Materials describes the methodology for using single-component gas adsorption and diffusion measurements to characterize nanoporous solids. Concise, yet comprehensive, the book covers both equilibrium adsorption and adsorption kinetics in dynamic systems in a single source. It presents the theoretical and mathematical tools for analyzing microporosity, kinetics, thermodynamics, and transport processes of the adsorbent surface. Then it examines how these measurements elucidate structural and morphological characteristics of the materials. Detailed descriptions of the phenomena include diagrams, essential equations, and fully derived, concrete examples based on the author's own research experiences and insight. The book contains chapters on statistical physics, dynamic adsorption in plug flow bed reactors, and the synthesis and modification of important nanoporous materials. The final chapter covers the principles and applications of adsorption for multicomponent systems in the liquid phase. Connecting recent advances in adsorption characterization with developments in the transport and diffusion of nanoporous materials, this book is ideal for scientists involved in the research, development, and applications of new nanoporous materials.


Diffusion in Nanoporous Materials

Diffusion in Nanoporous Materials

Author: Jörg Kärger

Publisher: John Wiley & Sons

Published: 2012-04-16

Total Pages: 932

ISBN-13: 3527651292

DOWNLOAD EBOOK

Atoms and molecules in all states of matter are subject to continuous irregular movement. This process, referred to as diffusion, is among the most general and basic phenomena in nature and determines the performance of many technological processes. This book provides an introduction to the fascinating world of diffusion in microporous solids. Jointly written by three well-known researchers in this field, it presents a coherent treatise, rather than a compilation of separate review articles, covering the theoretical fundamentals, molecular modeling, experimental observation and technical applications. Based on the book Diffusion in Zeolites and other Microporous Solids, originally published in 1992, it illustrates the remarkable speed with which this field has developed since that time. Specific topics include: new families of nanoporous materials, micro-imaging and single-particle tracking, direct monitoring of transient profiles by interference microscopy, single-file diffusion and new approaches to molecular modeling.


Adsorption-Controlled Gas Transport in Nanoporous Media

Adsorption-Controlled Gas Transport in Nanoporous Media

Author: Zizhong Liu

Publisher:

Published: 2022

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Nanoporous media consist of pores with sizes similar to the size of the fluid molecules, making fluid transport within them substantially different from that in the high permeable porous media and the bulk fluid. This poses challenges for modeling and predicting the transport and storage of fluids in nanoporous media, particularly in the presence of adsorption. Accordingly, the main goal of this dissertation is to develop rigorous yet straightforward approaches for analyzing and understanding the complex transport and sorption behaviors of high-pressure gas in nanoporous media through theoretical analysis and mathematical modeling. The hydraulic (pressure) diffusivity equation is commonly utilized to describe the fluid transport through porous media. However, the diffusivity equation appears as a second-order, nonlinear, partial differential equation due to the pressure-sensitive properties of the fluid and porous media. A unified approach is proposed in Chapter 2 that can be implemented to assess the nonlinearity associated with the transient linear flow of single-phase fluid flow from a pressure-sensitive formation (e.g., oil and gas reservoirs) subject to the constant pressure boundary conditions. The proposed approach provides a reliable avenue to assess the accuracy of the pseudo-time, which is commonly used to linearize the hydraulic diffusivity equation. The approach can also be utilized to identify the cases where pseudo-time may cause significant errors. Instead of using the pseudo-time approach, in Chapter 3, a piecewise constant coefficient approach is presented to linearize the hydraulic diffusivity equation. Using the piecewise approach, a semi-analytical model is developed for transient linear flow subject to constant pressure boundary conditions by considering pressure-dependent rock and fluid properties. The piecewise approach divides the domain under consideration into an arbitrary number of subdomains and assigns them with a constant hydraulic diffusivity coefficient. The results prove that the model can accurately estimate reservoir properties even for highly nonlinear equations. Due to the ultralow permeability (i.e.,


Access in Nanoporous Materials

Access in Nanoporous Materials

Author: T.J. Pinnavaia

Publisher: Springer Science & Business Media

Published: 2006-04-11

Total Pages: 436

ISBN-13: 0306470667

DOWNLOAD EBOOK

This series of books, which is published at the rate of about one per year, addresses fundamental problems in materials science. The contents cover a broad range of topics from small clusters of atoms to engineering materials and involve chemistry, physics, and engineering, with length scales ranging from Ångstromsup to millimeters. The emphasis is on basic science rather than on applications. Each book focuses on a single area ofcurrent interest and brings together leading experts to give an up-to-date discussion of their work and the work ofothers. Each article contains enough references that the interested reader can accesstherelevant literature. Thanks aregiven to the Center forFundamental Materials Research atMichigan State University forsupportingthis series. M.F. Thorpe, Series Editor E-mail: [email protected] EastLansing,Michigan, September, 1995 PREFACE This book records selected papers given at an interdisciplinary Symposium on Access in Nanoporous Materials held in Lansing, Michigan, on June 7-9, 1995. Broad interest in the synthesis of ordered materials with pore sizes in the 1.0-10 nm range was clearly manifested in the 64 invited and contributed papers presented by workers in the formal fields of chemistry, physics, and engineering. The intent of the symposium was to bring together a small number ofleading researchers within complementary disciplines to share in the diversity of approaches to nanoporous materials synthesis and characterization.


Using Nanofluidics and Microscopy to Study Unconventional Pore-scale Transport Phenomena

Using Nanofluidics and Microscopy to Study Unconventional Pore-scale Transport Phenomena

Author: Shaina Alysa Kelly

Publisher:

Published: 2015

Total Pages: 586

ISBN-13:

DOWNLOAD EBOOK

Shales are unconventional geologic media primarily composed of nanopores. Once considered impermeable by conventional reservoir descriptions, these media have received attention in recent years due to their vast energy and sequestration potential. Actuating and quantifying fluid flow through shale matrix remains a formidable challenge. Nanofluidics (nanoscale lab-on-a-chip devices) are a promising approach to studying fluid transport anomalies in tight porous media, including shale, because they allow visualization of fluid phenomena and control of synthetic nanoscale geometry. Readily fabricated nanoscale "reservoir-on-a-chip" devices enable testing of geometry- and nanoconfinement-related hypotheses alongside core data. This dissertation discusses nanofluidic studies in different-sized nanochannels and nano-networks and the fabrication of these devices, including first of their kind "shale-on-a-chip" nanomodels. Most experiments documented herein were performed within two-dimensional (2D) silica nanochannels as small as 30 nm x 60 nm in cross-section; foundational results for other geometries are presented as well. Anomalous fluid transport trends were revealed through nanoscale imbibition experiments. Liquid imbibition was captured with fluorescent microscopy and reflected differential interference contrast microscopy; dynamic flow data are rare in geometries that are nanoscale in two dimensions due to the limited resolution of optical microscopy. Imbibition of various wetting liquids in the arrays of horizontal, 2D silica nanochannels consistently demonstrated substantial divergence from the imbibition speeds predicted by the continuum Washburn equation for capillary flow as a function of hydraulic diameter and liquid type. Non-Washburn or non-diffusive front length-versus-time dynamics were also observed. These findings and other atypical imbibition data presented herein are explained by the enhanced influence the following phenomena at the nanoscale: surface forces at fluid-solid boundaries, the presence of quasi-crystalline thin films or boundary regions, and potential solid surface or boundary layer deformation due to meniscus-induced negative pressures (suction). This dissertation presents an experimental method and corresponding image and data analysis scheme that enable identification of the origin of imbibition irregularities in terms of transport variables: independent effective values of nanoscale capillary pressure, liquid viscosity, diffusivity, and interfacial gas partitioning coefficients were determined from imbibition within the tested nanochannels. The method can also be used in nano-networks and nanoporous materials. Phenomenological models were derived to match the nanofluidics data and include descriptions of effective diameter, effective capillary pressure, and effective liquid viscosity. The scalable implications of these findings and models for tight rocks and nanoporous materials are discussed in the context of fluid transport in shale. A complementary study was conducted into the utility of digital rock physics in three dimensional models of nanoscale resolution rendered from focused ion beam scanning electron microscopy (FIB-SEM) images. Results indicate that FIB-SEM images below ~5000 um3 volume (the largest volume analyzed) are not a suitable volume for extracting representative shale pore-scale networks, permeability, and other fluid transport properties. These findings strengthen the usefulness of nanofluidics in the study of unconventional rocks: nanofluidics fills the gap in quantifying pore-scale transport mechanisms where digital rock physics and indirect core analysis methods have limited scope and/or resolution.


Preparation and Properties of Inverse Nanoparticle-Polymer Composites

Preparation and Properties of Inverse Nanoparticle-Polymer Composites

Author: Ron Hoffmann-Sebold

Publisher: Cuvillier Verlag

Published: 2023-02-28

Total Pages: 248

ISBN-13: 373696742X

DOWNLOAD EBOOK

Die Dissertation legt die Überwindung der Nachteile von niedrig gefüllten Nanopartikel–Polymer–Kompositen durch die anfängliche Herstellung eines stabilen, perkolierenden anorganischen Nanopartikelgerüsts dar. Dessen sehr hohe Porosität wird entweder aus der Gasphase mittels Flammensprühpyrolyse (FSP) oder alternativ über nasschemische Präparation mittels Sol–Gel–Verfahren erreicht. Im Anschluss werden die perkolierenden Strukturen mittels kapillargetriebener Infiltration mit einem Monomer gefüllt, welches daraufhin photochemisch polymerisiert wird. Das erhaltene System wird inverses Nanopartikel–Polymer–Komposit genannt. Dünne Schichten daraus können beispielweise für haftvermittelnde, elektrische sowie optoelektronische Funktionsmaterialien eingesetzt werden. Die ursprüngliche Partikelnetzwerk– und Porenstruktur bleibt während der Präparation erhalten und durch die Infiltration sowie anschließende Monomer–Polymerisation konnte die elektrische Leitfähigkeit von Halbleiternanopartikeln deutlich gesteigert werden. Für den Reaktionsmechanismus innerhalb der mesoskaligen Porenstruktur wurde ein analytisches Kinetikmodell der freien radikalischen Photopolymerisation unter Einschluss entwickelt und mit diffuser Reflexions-FTIR-Spektroskopie (DRIFTS) bestätigt.