Fluid Mechanics of Viscoplasticity

Fluid Mechanics of Viscoplasticity

Author: Raja R. Huilgol

Publisher: Springer

Published: 2015-01-09

Total Pages: 289

ISBN-13: 3662456176

DOWNLOAD EBOOK

In this book, we shall consider the kinematics and dynamics of the flows of fluids exhibiting a yield stress. To highlight the principal characteristics of such fluids, the first chapter emphasizes the role played by the yield stress. Next, a careful description of the continuum mechanics behind the constitutive equations for incompressible and compressible viscoplastic fluids is given in Chapters 2–4. In Chapters 5 and 6 analytical solutions to several steady and unsteady flows of Bingham fluids are presented. The subsequent Chapters 7–10 are concerned with the development of variational principles and their numerical solutions, along with perturbation methods which play a significant role in numerical simulations.


Fluid Mechanics of Viscoplasticity

Fluid Mechanics of Viscoplasticity

Author: Raja R. Huilgol

Publisher: Springer Nature

Published: 2022-04-14

Total Pages: 405

ISBN-13: 3030985032

DOWNLOAD EBOOK

This book considers the kinematics and dynamics of the flows of fluids exhibiting a yield stress. Continuum mechanics governing the fluid mechanics is described. Two chapters are dedicated to analytical solutions to several steady and unsteady flows of viscoplastic fluids, including flows with pressure-dependent rheological parameters. Perturbation methods, variational inequalities to solve fluid flow problems, and the use of energy methods are discussed. Numerical modeling using augmented Lagrangian, operator splitting, finite difference, and lattice Boltzmann methods are employed. The second edition provides new sections on flows of yield stress fluids with pressure-dependent rheological parameters, on flows with wall slip, and on deriving the fundamental equations for Boltzmann lattice materials. Furthermore new material on the lubrication approximation and applications of finite differences has been added.


Fluid Mechanics of Viscoplasticity

Fluid Mechanics of Viscoplasticity

Author: Raja R. Huilgol

Publisher:

Published: 2022

Total Pages: 0

ISBN-13: 9783030985042

DOWNLOAD EBOOK

This book considers the kinematics and dynamics of the flows of fluids exhibiting a yield stress. Continuum mechanics governing the fluid mechanics is described. Two chapters are dedicated to analytical solutions to several steady and unsteady flows of viscoplastic fluids, including flows with pressure-dependent rheological parameters. Perturbation methods, variational inequalities to solve fluid flow problems, and the use of energy methods are discussed. Numerical modeling using augmented Lagrangian, operator splitting, finite difference, and lattice Boltzmann methods are employed. The second edition provides new sections on flows of yield stress fluids with pressure-dependent rheological parameters, on flows with wall slip, and on deriving the fundamental equations for Boltzmann lattice materials. Furthermore new material on the lubrication approximation and applications of finite differences has been added.


Creep Mechanics

Creep Mechanics

Author: Josef Betten

Publisher: Springer Science & Business Media

Published: 2008-08-17

Total Pages: 378

ISBN-13: 3540850511

DOWNLOAD EBOOK

The simplest way to formulate the basic equations of continuum mech- ics and the constitutive or evolutional equations of various materials is to restrict ourselves to rectangular cartesian coordinates. However, solving p- ticular problems, for instance in Chapter 5, it may be preferable to work in terms of more suitable coordinate systems and their associated bases. The- fore, Chapter 2 is also concerned with the standard techniques of tensor an- ysis in general coordinate systems. Creep mechanics is a part of continuum mechanics, like elasticity or pl- ticity. Therefore, some basic equations of continuum mechanics are put - gether in Chapter 3. These equations can apply equally to all materials and they are insuf?cient to describe the mechanical behavior of any particular material. Thus, we need additional equations characterizing the individual material and its reaction under creep condition according to Chapter 4, which is subdivided into three parts: the primary, the secondary, and the tertiary creep behavior of isotropic and anisotropic materials. The creep behavior of a thick-walled tube subjected to internal pressure is discussed in Chapter 5. The tube is partly plastic and partly elastic at time zero. The investigation is based upon the usual assumptions of incompre- ibility and zero axial creep. The creep deformations are considered to be of such magnitude that the use of ?nite-strain theory is necessary. The inner and outer radius, the stress distributions as functions of time, and the cre- failure time are calculated.


Lectures on Visco-Plastic Fluid Mechanics

Lectures on Visco-Plastic Fluid Mechanics

Author: Guillaume Ovarlez

Publisher: Springer

Published: 2018-06-26

Total Pages: 265

ISBN-13: 3319894382

DOWNLOAD EBOOK

The book is designed for advanced graduate students as well as postdoctoral researchers across several disciplines (e.g., mathematics, physics and engineering), as it provides them with tools and techniques that are essential in performing research on the flow problems of visco-plastic fluids. The following topics are treated: analysis of classical visco-plastic fluid models mathematical modeling of flows of visco-plastic fluids computing flows of visco-plastic fluids rheology of visco-plastic fluids and visco-plastic suspensions application of visco-plastic fluids in engineering sciences complex flows of visco-plastic fluids.


Non-Newtonian Fluid Mechanics and Complex Flows

Non-Newtonian Fluid Mechanics and Complex Flows

Author: Angiolo Farina

Publisher: Springer

Published: 2018-06-25

Total Pages: 308

ISBN-13: 3319747967

DOWNLOAD EBOOK

This book presents a series of challenging mathematical problems which arise in the modeling of Non-Newtonian fluid dynamics. It focuses in particular on the mathematical and physical modeling of a variety of contemporary problems, and provides some results. The flow properties of Non-Newtonian fluids differ in many ways from those of Newtonian fluids. Many biological fluids (blood, for instance) exhibit a non-Newtonian behavior, as do many naturally occurring or technologically relevant fluids such as molten polymers, oil, mud, lava, salt solutions, paint, and so on. The term "complex flows" usually refers to those fluids presenting an "internal structure" (fluid mixtures, solutions, multiphase flows, and so on). Modern research on complex flows has increased considerably in recent years due to the many biological and industrial applications.


Collision Phenomena in Liquids and Solids

Collision Phenomena in Liquids and Solids

Author: Alexander L. Yarin

Publisher: Cambridge University Press

Published: 2017-06-15

Total Pages: 629

ISBN-13: 1107147905

DOWNLOAD EBOOK

A unique and in-depth discussion uncovering the unifying features of collision phenomena in liquids and solids, along with applications.


Viscoelasticity and Rheology

Viscoelasticity and Rheology

Author: Arthur S. Lodge

Publisher: Academic Press

Published: 2014-06-28

Total Pages: 456

ISBN-13: 1483263355

DOWNLOAD EBOOK

Viscoelasticity and Rheology covers the proceedings of a symposium by the same title, conducted by the Mathematics Research Center held at the University of Wisconsin-Madison on October 16-18, 1984. The contributions to the symposium are divided into four broad categories, namely, experimental results, constitutive theories, mathematical analysis, and computation. This 16-chapter work begins with experimental topics, including the motion of bubbles in viscoelastic fluids, wave propagation in viscoelastic solids, flows through contractions, and cold-drawing of polymers. The next chapters covering constitutive theories explore the molecular theories for polymer solutions and melts based on statistical mechanics, the use and limitations of approximate constitutive theories, a comparison of constitutive laws based on various molecular theories, network theories and some of their advantages in relation to experiments, and models for viscoplasticity. These topics are followed by discussions of the existence, regularity, and development of singularities, change of type, interface problems in viscoelasticity, existence for initial value problems and steady flows, and propagation and development of singularities. The remaining chapters deal with the numerical simulation of flow between eccentric cylinders, flow around spheres and bubbles, the hole pressure problem, and a review of computational problems related to various constitutive laws. This book will prove useful to chemical engineers, researchers, and students.


Singular Integral Equations

Singular Integral Equations

Author: E.G. Ladopoulos

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 569

ISBN-13: 3662042916

DOWNLOAD EBOOK

The present book deals with the finite-part singular integral equations, the multidimensional singular integral equations and the non-linear singular integral equations, which are currently used in many fields of engineering mechanics with applied character, like elasticity, plasticity, thermoelastoplasticity, viscoelasticity, viscoplasticity, fracture mechanics, structural analysis, fluid mechanics, aerodynamics and elastodynamics. These types of singular integral equations form the latest high technology on the solution of very important problems of solid and fluid mechanics and therefore special attention should be given by the reader of the present book, who is interested for the new technology of the twentieth-one century. Chapter 1 is devoted with a historical report and an extended outline of References, for the finite-part singular integral equations, the multidimensional singular integral equations and the non-linear singular integral equations. Chapter 2 provides a finite-part singular integral representation analysis in Lp spaces and in general Hilbert spaces. In the same Chapter are investigated all possible approximation methods for the numerical evaluation of the finite-part singular integral equations, as closed form solutions for the above type of integral equations are available only in simple cases. Also, Chapter 2 provides further a generalization of the well known Sokhotski-Plemelj formulae and the Nother theorems, for the case of a finite-part singular integral equation.


Issues in Mechanical Engineering: 2011 Edition

Issues in Mechanical Engineering: 2011 Edition

Author:

Publisher: ScholarlyEditions

Published: 2012-01-09

Total Pages: 2526

ISBN-13: 1464963754

DOWNLOAD EBOOK

Issues in Mechanical Engineering / 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Mechanical Engineering. The editors have built Issues in Mechanical Engineering: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Mechanical Engineering in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Mechanical Engineering: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.