Fluid Mechanics for Chemical Engineers with Microfluidics and CFD.

Fluid Mechanics for Chemical Engineers with Microfluidics and CFD.

Author: James O. Wilkes

Publisher: Pearson Education

Published: 2006

Total Pages: 778

ISBN-13: 0131482122

DOWNLOAD EBOOK

This second edition contains extensive new coverage of both microfluidics and computational fluid dynamics, systematically demonstrating CFD through detailed examples using FlowLab and COMSOL Multiphysics. The chapter on turbulence has been extensively revised to address more complex and realistic challenges, including turbulent mixing and recirculating flows"--Jacket.


Fluid Mechanics for Chemical Engineers

Fluid Mechanics for Chemical Engineers

Author: James O. Wilkes

Publisher: Prentice Hall

Published: 2017-07-20

Total Pages: 1161

ISBN-13: 0134712919

DOWNLOAD EBOOK

The Chemical Engineer's Practical Guide to Fluid Mechanics: Now Includes COMSOL Multiphysics 5 Since most chemical processing applications are conducted either partially or totally in the fluid phase, chemical engineers need mastery of fluid mechanics. Such knowledge is especially valuable in the biochemical, chemical, energy, fermentation, materials, mining, petroleum, pharmaceuticals, polymer, and waste-processing industries. Fluid Mechanics for Chemical Engineers: with Microfluidics, CFD, and COMSOL Multiphysics 5, Third Edition, systematically introduces fluid mechanics from the perspective of the chemical engineer who must understand actual physical behavior and solve real-world problems. Building on the book that earned Choice Magazine's Outstanding Academic Title award, this edition also gives a comprehensive introduction to the popular COMSOL Multiphysics 5 software. This third edition contains extensive coverage of both microfluidics and computational fluid dynamics, systematically demonstrating CFD through detailed examples using COMSOL Multiphysics 5 and ANSYS Fluent. The chapter on turbulence now presents valuable CFD techniques to investigate practical situations such as turbulent mixing and recirculating flows. Part I offers a clear, succinct, easy-to-follow introduction to macroscopic fluid mechanics, including physical properties; hydrostatics; basic rate laws; and fundamental principles of flow through equipment. Part II turns to microscopic fluid mechanics: Differential equations of fluid mechanics Viscous-flow problems, some including polymer processing Laplace's equation; irrotational and porous-media flows Nearly unidirectional flows, from boundary layers to lubrication, calendering, and thin-film applications Turbulent flows, showing how the k-ε method extends conventional mixing-length theory Bubble motion, two-phase flow, and fluidization Non-Newtonian fluids, including inelastic and viscoelastic fluids Microfluidics and electrokinetic flow effects, including electroosmosis, electrophoresis, streaming potentials, and electroosmotic switching Computational fluid mechanics with ANSYS Fluent and COMSOL Multiphysics Nearly 100 completely worked practical examples include 12 new COMSOL 5 examples: boundary layer flow, non-Newtonian flow, jet flow, die flow, lubrication, momentum diffusion, turbulent flow, and others. More than 300 end-of-chapter problems of varying complexity are presented, including several from University of Cambridge exams. The author covers all material needed for the fluid mechanics portion of the professional engineer's exam. The author's website (fmche.engin.umich.edu) provides additional notes, problem-solving tips, and errata. Register your book for convenient access to downloads, updates, and/or corrections as they become available. See inside book for details.


Physical and Chemical Equilibrium for Chemical Engineers

Physical and Chemical Equilibrium for Chemical Engineers

Author: Noel de Nevers

Publisher: John Wiley & Sons

Published: 2012-03-20

Total Pages: 384

ISBN-13: 0470927100

DOWNLOAD EBOOK

This book concentrates on the topic of physical and chemical equilibrium. Using the simplest mathematics along with numerous numerical examples it accurately and rigorously covers physical and chemical equilibrium in depth and detail. It continues to cover the topics found in the first edition however numerous updates have been made including: Changes in naming and notation (the first edition used the traditional names for the Gibbs Free Energy and for Partial Molal Properties, this edition uses the more popular Gibbs Energy and Partial Molar Properties,) changes in symbols (the first edition used the Lewis-Randal fugacity rule and the popular symbol for the same quantity, this edition only uses the popular notation,) and new problems have been added to the text. Finally the second edition includes an appendix about the Bridgman table and its use.


Fox and McDonald's Introduction to Fluid Mechanics

Fox and McDonald's Introduction to Fluid Mechanics

Author: Robert W. Fox

Publisher: John Wiley & Sons

Published: 2020-06-30

Total Pages: 610

ISBN-13: 1119721024

DOWNLOAD EBOOK

Through ten editions, Fox and McDonald's Introduction to Fluid Mechanics has helped students understand the physical concepts, basic principles, and analysis methods of fluid mechanics. This market-leading textbook provides a balanced, systematic approach to mastering critical concepts with the proven Fox-McDonald solution methodology. In-depth yet accessible chapters present governing equations, clearly state assumptions, and relate mathematical results to corresponding physical behavior. Emphasis is placed on the use of control volumes to support a practical, theoretically-inclusive problem-solving approach to the subject. Each comprehensive chapter includes numerous, easy-to-follow examples that illustrate good solution technique and explain challenging points. A broad range of carefully selected topics describe how to apply the governing equations to various problems, and explain physical concepts to enable students to model real-world fluid flow situations. Topics include flow measurement, dimensional analysis and similitude, flow in pipes, ducts, and open channels, fluid machinery, and more. To enhance student learning, the book incorporates numerous pedagogical features including chapter summaries and learning objectives, end-of-chapter problems, useful equations, and design and open-ended problems that encourage students to apply fluid mechanics principles to the design of devices and systems.


Fundamentals of Chemical Engineering Thermodynamics

Fundamentals of Chemical Engineering Thermodynamics

Author: Themis Matsoukas

Publisher: Pearson Education

Published: 2013

Total Pages: 719

ISBN-13: 0132693062

DOWNLOAD EBOOK

Fundamentals of Chemical Engineering Thermodynamics is the clearest and most well-organized introduction to thermodynamics theory and calculations for all chemical engineering undergraduates. This brand-new text makes thermodynamics far easier to teach and learn. Drawing on his award-winning courses at Penn State, Dr. Themis Matsoukas organizes the text for more effective learning, focuses on "why" as well as "how," offers imagery that helps students conceptualize the equations, and illuminates thermodynamics with relevant examples from within and beyond the chemical engineering discipline. Matsoukas presents solved problems in every chapter, ranging from basic calculations to realistic safety and environmental applications.


Advanced Transport Phenomena

Advanced Transport Phenomena

Author: P. A. Ramachandran

Publisher: Cambridge University Press

Published: 2014-09-25

Total Pages: 805

ISBN-13: 0521762618

DOWNLOAD EBOOK

Integrated, modern approach to transport phenomena for graduate students, featuring examples and computational solutions to develop practical problem-solving skills.


Dynamics of Polymeric Liquids, Volume 2

Dynamics of Polymeric Liquids, Volume 2

Author: R. Byron Bird

Publisher: Wiley-Interscience

Published: 1987-05-04

Total Pages: 464

ISBN-13: 9780471802440

DOWNLOAD EBOOK

This two-volume work is detailed enough to serve as a text and comprehensive enough to stand as a reference. Volume 1, Fluid Mechanics, summarizes the key experiments that show how polymeric fluids differ from structurally simple fluids, then presents, in rough historical order, various methods for solving polymer fluid dynamics problems. Volume 2, Kinetic Theory, uses molecular models and the methods of statistical mechanics to obtain relations between bulk flow behavior and polymer structure. Includes end-of-chapter problems and extensive appendixes.


Microfluidics

Microfluidics

Author: Bastian E. Rapp

Publisher: Elsevier

Published: 2022-10-07

Total Pages: 850

ISBN-13: 0128240237

DOWNLOAD EBOOK

Microfluidics: Modeling, Mechanics and Mathematics, Second Edition provides a practical, lab-based approach to nano- and microfluidics, including a wealth of practical techniques, protocols and experiments ready to be put into practice in both research and industrial settings. This practical approach is ideally suited to researchers and R&D staff in industry. Additionally, the interdisciplinary approach to the science of nano- and microfluidics enables readers from a range of different academic disciplines to broaden their understanding. Alongside traditional fluid/transport topics, the book contains a wealth of coverage of materials and manufacturing techniques, chemical modification/surface functionalization, biochemical analysis, and the biosensors involved. This fully updated new edition also includes new sections on viscous flows and centrifugal microfluidics, expanding the types of platforms covered to include centrifugal, capillary and electro kinetic platforms. - Provides a practical guide to the successful design and implementation of nano- and microfluidic processes (e.g., biosensing) and equipment (e.g., biosensors, such as diabetes blood glucose sensors) - Provides techniques, experiments and protocols that are ready to be put to use in the lab, or in an academic or industry setting - Presents a collection of 3D-CAD and image files on a companion website


Analysis, Synthesis and Design of Chemical Processes

Analysis, Synthesis and Design of Chemical Processes

Author: Richard Turton

Publisher: Pearson Education

Published: 2008-12-24

Total Pages: 1562

ISBN-13: 0132459183

DOWNLOAD EBOOK

The Leading Integrated Chemical Process Design Guide: Now with New Problems, New Projects, and More More than ever, effective design is the focal point of sound chemical engineering. Analysis, Synthesis, and Design of Chemical Processes, Third Edition, presents design as a creative process that integrates both the big picture and the small details–and knows which to stress when, and why. Realistic from start to finish, this book moves readers beyond classroom exercises into open-ended, real-world process problem solving. The authors introduce integrated techniques for every facet of the discipline, from finance to operations, new plant design to existing process optimization. This fully updated Third Edition presents entirely new problems at the end of every chapter. It also adds extensive coverage of batch process design, including realistic examples of equipment sizing for batch sequencing; batch scheduling for multi-product plants; improving production via intermediate storage and parallel equipment; and new optimization techniques specifically for batch processes. Coverage includes Conceptualizing and analyzing chemical processes: flow diagrams, tracing, process conditions, and more Chemical process economics: analyzing capital and manufacturing costs, and predicting or assessing profitability Synthesizing and optimizing chemical processing: experience-based principles, BFD/PFD, simulations, and more Analyzing process performance via I/O models, performance curves, and other tools Process troubleshooting and “debottlenecking” Chemical engineering design and society: ethics, professionalism, health, safety, and new “green engineering” techniques Participating successfully in chemical engineering design teams Analysis, Synthesis, and Design of Chemical Processes, Third Edition, draws on nearly 35 years of innovative chemical engineering instruction at West Virginia University. It includes suggested curricula for both single-semester and year-long design courses; case studies and design projects with practical applications; and appendixes with current equipment cost data and preliminary design information for eleven chemical processes–including seven brand new to this edition.


Fluid Mechanics for Engineers

Fluid Mechanics for Engineers

Author: Meinhard T. Schobeiri

Publisher: Springer Science & Business Media

Published: 2010-03-27

Total Pages: 517

ISBN-13: 3642115942

DOWNLOAD EBOOK

The contents of this book covers the material required in the Fluid Mechanics Graduate Core Course (MEEN-621) and in Advanced Fluid Mechanics, a Ph. D-level elective course (MEEN-622), both of which I have been teaching at Texas A&M University for the past two decades. While there are numerous undergraduate fluid mechanics texts on the market for engineering students and instructors to choose from, there are only limited texts that comprehensively address the particular needs of graduate engineering fluid mechanics courses. To complement the lecture materials, the instructors more often recommend several texts, each of which treats special topics of fluid mechanics. This circumstance and the need to have a textbook that covers the materials needed in the above courses gave the impetus to provide the graduate engineering community with a coherent textbook that comprehensively addresses their needs for an advanced fluid mechanics text. Although this text book is primarily aimed at mechanical engineering students, it is equally suitable for aerospace engineering, civil engineering, other engineering disciplines, and especially those practicing professionals who perform CFD-simulation on a routine basis and would like to know more about the underlying physics of the commercial codes they use. Furthermore, it is suitable for self study, provided that the reader has a sufficient knowledge of calculus and differential equations. In the past, because of the lack of advanced computational capability, the subject of fluid mechanics was artificially subdivided into inviscid, viscous (laminar, turbulent), incompressible, compressible, subsonic, supersonic and hypersonic flows.