Flow Networks

Flow Networks

Author: Michael T. Todinov

Publisher: Newnes

Published: 2013-01-16

Total Pages: 266

ISBN-13: 0123984068

DOWNLOAD EBOOK

Repairable flow networks are a new area of research, which analyzes the repair and flow disruption caused by failures of components in static flow networks. This book addresses a gap in current network research by developing the theory, algorithms and applications related to repairable flow networks and networks with disturbed flows. The theoretical results presented in the book lay the foundations of a new generation of ultra-fast algorithms for optimizing the flow in networks after failures or congestion, and the high computational speed creates the powerful possibility of optimal control of very large and complex networks in real time. Furthermore, the possibility for re-optimizing the network flows in real time increases significantly the yield from real production networks and reduces to a minimum the flow disruption caused by failures. The potential application of repairable flow networks reaches across many large and complex systems, including active power networks, telecommunication networks, oil and gas production networks, transportation networks, water supply networks, emergency evacuation networks, and supply networks. The book reveals a fundamental flaw in classical algorithms for maximising the throughput flow in networks, published since the creation of the theory of flow networks in 1956. Despite the years of intensive research, the classical algorithms for maximising the throughput flow leave highly undesirable directed loops of flow in the optimised networks. These flow loops are associated with wastage of energy and resources and increased levels of congestion in the optimised networks. - Includes theory and practical examples to build a deep understanding of the issues - Written by the leading scholar and researcher in this emerging field - Features powerful software tools for analysis, optimization and control of repairable flow networks


Network Flows

Network Flows

Author: Ravindra K. Ahuja

Publisher: Andesite Press

Published: 2015-08-08

Total Pages:

ISBN-13: 9781297491764

DOWNLOAD EBOOK

This work has been selected by scholars as being culturally important, and is part of the knowledge base of civilization as we know it. This work was reproduced from the original artifact, and remains as true to the original work as possible. Therefore, you will see the original copyright references, library stamps (as most of these works have been housed in our most important libraries around the world), and other notations in the work. This work is in the public domain in the United States of America, and possibly other nations. Within the United States, you may freely copy and distribute this work, as no entity (individual or corporate) has a copyright on the body of the work. As a reproduction of a historical artifact, this work may contain missing or blurred pages, poor pictures, errant marks, etc. Scholars believe, and we concur, that this work is important enough to be preserved, reproduced, and made generally available to the public. We appreciate your support of the preservation process, and thank you for being an important part of keeping this knowledge alive and relevant.


Flows in Networks

Flows in Networks

Author: Lester Randolph Ford Jr.

Publisher: Princeton University Press

Published: 2024-12-03

Total Pages: 216

ISBN-13: 069127343X

DOWNLOAD EBOOK

A landmark work that belongs on the bookshelf of every researcher working with networks In this classic book, first published in 1962, L. R. Ford, Jr., and D. R. Fulkerson set the foundation for the study of network flow problems. The models and algorithms introduced in Flows in Networks are used widely today in the fields of transportation systems, manufacturing, inventory planning, image processing, and Internet traffic. The techniques presented by Ford and Fulkerson spurred the development of powerful computational tools for solving and analyzing network flow models, and also furthered the understanding of linear programming. In addition, the book helped illuminate and unify results in combinatorial mathematics while emphasizing proofs based on computationally efficient construction. With an incisive foreword by Robert Bland and James Orlin, Flows in Networks is rich with insights that remain relevant to current research in engineering, management, and other sciences.


Network Flow Algorithms

Network Flow Algorithms

Author: David P. Williamson

Publisher: Cambridge University Press

Published: 2019-09-05

Total Pages: 327

ISBN-13: 1316946665

DOWNLOAD EBOOK

Network flow theory has been used across a number of disciplines, including theoretical computer science, operations research, and discrete math, to model not only problems in the transportation of goods and information, but also a wide range of applications from image segmentation problems in computer vision to deciding when a baseball team has been eliminated from contention. This graduate text and reference presents a succinct, unified view of a wide variety of efficient combinatorial algorithms for network flow problems, including many results not found in other books. It covers maximum flows, minimum-cost flows, generalized flows, multicommodity flows, and global minimum cuts and also presents recent work on computing electrical flows along with recent applications of these flows to classical problems in network flow theory.


Routing, Flow, and Capacity Design in Communication and Computer Networks

Routing, Flow, and Capacity Design in Communication and Computer Networks

Author: Michal Pioro

Publisher: Elsevier

Published: 2004-07-21

Total Pages: 795

ISBN-13: 0080516432

DOWNLOAD EBOOK

In network design, the gap between theory and practice is woefully broad. This book narrows it, comprehensively and critically examining current network design models and methods. You will learn where mathematical modeling and algorithmic optimization have been under-utilized. At the opposite extreme, you will learn where they tend to fail to contribute to the twin goals of network efficiency and cost-savings. Most of all, you will learn precisely how to tailor theoretical models to make them as useful as possible in practice.Throughout, the authors focus on the traffic demands encountered in the real world of network design. Their generic approach, however, allows problem formulations and solutions to be applied across the board to virtually any type of backbone communication or computer network. For beginners, this book is an excellent introduction. For seasoned professionals, it provides immediate solutions and a strong foundation for further advances in the use of mathematical modeling for network design. - Written by leading researchers with a combined 40 years of industrial and academic network design experience. - Considers the development of design models for different technologies, including TCP/IP, IDN, MPLS, ATM, SONET/SDH, and WDM. - Discusses recent topics such as shortest path routing and fair bandwidth assignment in IP/MPLS networks. - Addresses proper multi-layer modeling across network layers using different technologies—for example, IP over ATM over SONET, IP over WDM, and IDN over SONET. - Covers restoration-oriented design methods that allow recovery from failures of large-capacity transport links and transit nodes. - Presents, at the end of each chapter, exercises useful to both students and practitioners.


Gravity-Driven Water Flow in Networks

Gravity-Driven Water Flow in Networks

Author: Gerard F. Jones

Publisher: John Wiley & Sons

Published: 2011-12-29

Total Pages: 571

ISBN-13: 1118002083

DOWNLOAD EBOOK

Gravity-driven water flow networks are a crucial method of delivering clean water to millions of people worldwide, and an essential agricultural tool. This book provides an all-encompassing guide to designing these water networks, combining theory and case studies. It includes design formulas for water flow in single or multiple, uniform or non-uniform diameter pipe networks; case studies on how systems are built, used, and maintained; comprehensive coverage of pipe materials, pressure ratings, and dimensions; and over 100 illustrations and tables. It is a key resource both for working engineers and engineering students and instructors.


Analysis and Modelling of Non-Steady Flow in Pipe and Channel Networks

Analysis and Modelling of Non-Steady Flow in Pipe and Channel Networks

Author: Vinko Jovic

Publisher: John Wiley & Sons

Published: 2013-03-08

Total Pages: 549

ISBN-13: 1118536886

DOWNLOAD EBOOK

Analysis and Modelling of Non-Steady Flow in Pipe and Channel Networks deals with flows in pipes and channel networks from the standpoints of hydraulics and modelling techniques and methods. These engineering problems occur in the course of the design and construction of hydroenergy plants, water-supply and other systems. In this book, the author presents his experience in solving these problems from the early 1970s to the present day. During this period new methods of solving hydraulic problems have evolved, due to the development of computers and numerical methods. This book is accompanied by a website which hosts the author's software package, Simpip (an abbreviation of simulation of pipe flow) for solving non-steady pipe flow using the finite element method. The program also covers flows in channels. The book presents the numerical core of the SimpipCore program (written in Fortran). Key features: Presents the theory and practice of modelling different flows in hydraulic networks Takes a systematic approach and addresses the topic from the fundamentals Presents numerical solutions based on finite element analysis Accompanied by a website hosting supporting material including the SimpipCore project as a standalone program Analysis and Modelling of Non-Steady Flow in Pipe and Channel Networks is an ideal reference book for engineers, practitioners and graduate students across engineering disciplines.


Advances in Safety, Reliability and Risk Management

Advances in Safety, Reliability and Risk Management

Author: Christophe Berenguer

Publisher: CRC Press

Published: 2011-08-31

Total Pages: 544

ISBN-13: 0415683793

DOWNLOAD EBOOK

Advances in Safety, Reliability and Risk Management contains the papers presented at the 20th European Safety and Reliability (ESREL 2011) annual conference in Troyes, France, in September 2011. The books covers a wide range of topics, including: Accident and Incident Investigation; Bayesian methods; Crisis and Emergency Management; Decision Making under Risk; Dynamic Reliability; Fault Diagnosis, Prognosis and System Health Management; Fault Tolerant Control and Systems; Human Factors and Human Reliability; Maintenance Modelling and Optimisation; Mathematical Methods in Reliability and Safety; Occupational Safety; Quantitative Risk Assessment; Reliability and Safety Data Collection and Analysis; Risk and Hazard Analysis; Risk Governance; Risk Management; Safety Culture and Risk Perception; Structural Reliability and Design Codes; System Reliability Analysis; Uncertainty and Sensitivity Analysis. Advances in Safety, Reliability and Risk Management will be of interest to academics and professionals working in a wide range of scientific, industrial and governmental sectors, including: Aeronautics and Aerospace; Chemical and Process Industry; Civil Engineering; Critical Infrastructures; Energy; Information Technology and Telecommunications; Land Transportation; Manufacturing; Maritime Transportation; Mechanical Engineering; Natural Hazards; Nuclear Industry; Offshore Industry; Policy Making and Public Planning.


Energy Transmission and Synchronization in Complex Networks

Energy Transmission and Synchronization in Complex Networks

Author: Nicolás Rubido

Publisher: Springer

Published: 2015-08-20

Total Pages: 130

ISBN-13: 3319222163

DOWNLOAD EBOOK

This work tackles the problems of understanding how energy is transmitted and distributed in power-grids as well as in determining how robust this transmission and distribution is when modifications to the grid or power occur. The most important outcome is the derivation of explicit relationships between the structure of the grid, the optimal transmission and distribution of energy, and the grid’s collective behavior (namely, the synchronous generation of power). These relationships are extremely relevant for the design of resilient power-grid models. To allow the reader to apply these results to other complex systems, the thesis includes a review of relevant aspects of network theory, spectral theory, and novel analytical calculations to predict the existence and stability of periodic collective behavior in complex networks of phase oscillators, which constitute a paradigmatic model for many complex systems.