A fundamental overview of the subject which assesses the potential advantages of this technique for analyzing clinical, agricultural, environmental, geological, and industrial specimens. Covers current developments in the instrumentation, components, and designs of these systems; furnishes an excell
The concept of flow injection analysis (FIA) was introduced in the mid-seventies. It was preceded by the success of segmented flow analysis, mainly in clinical and environmental analysis. This advance, as well as the development of continuous monitors for process control and environmental monitors, ensured the success of the FIA methodology. As an exceptionally effective means of mechanization for various procedures of wet chemical analysis, the FIA methodology, in use with a whole arsenal of detection methods of modern analytical chemistry, proved to be of great interest to many.The fast and intensive development of the FIA methodology was due to several factors essential for routine analytical determinations, such as very limited sample consumption, the short analysis time based on a transient signal measurement in a flow-through detector and an on-line carrying out difficult operations of separation, preconcentration or physicochemical conversion of analytes into detectable species.Twenty-year studies by numerous research groups all over the world have provided significant progress in the theoretical description of dispersion phenomena in FIA and various operations of physicochemical treatment of the analyte. This volume is devoted to the presentation of the current status of development of the instrumentation for FIA and the many fields of its practical applications, based on an extensive bibliography of original research publications.
Flow Analysis (FA) offers a very convenient and fast approach to enhance and automate 'preliminary steps' of analysis (sample dissolution, pretreatments, preconcentrations, etc.) for atomic spectrometric detectors (ASD). Moreover, flow manifolds can ease the well-known problem of sample introduction/presentation to atomisers or even expand the classical scope of atomic/elemental information, characterizing atomic spectrometry, into the realm of molecules and metal-compounds analysis (e.g. by resorting to coupled separation techniques). All these facts could explain both the extraordinary interest for research and the great importance for practical problem-solving achieved nowadays by FA-ASD.On the threshold of the new millennium when plasma emission and mass spectrometry are so important and popular, the editor considered it timely to produce a book which covers all present atomic detectors and techniques where FA has been or can be advantageously employed. The book has been conceived in three separate parts:Part I gives the fundamental, instrumentation and potential of FIA as a most versatile sample presentation/introduction system for atomic spectrometry.Part II provides a modern account of fundamentals, possibilities and applications offered by flow analysis to atomic spectrometry for on-line sample pretreatments, separations and preconcentrations.Part III deals with applications of FA-ASD combinations to analytical problem-solving in most varied fields and situations.This monograph integrates the most popular aspects of FIA, its new developments for sample on-line treatments and on-line non-chromatographic and chromatographic separations (all typical 'flow analysis') in connection with all branches of analytical atomic spectrometry. Thus, academics, researchers and routine users of analytical atomic spectrometry will find this book invaluable.
Flow Analysis: A Practical Guide reviews flow techniques for automating chemical analysis with the goal of increasing efficiency and producing better analytical results. Various applications for flow techniques are reviewed including industrial process monitoring (for example, foods and beverages, drugs and pharmaceuticals); as well as agricultural, life science, radioactivity, and environmental analysis with an emphasis on the latter. This book is a valuable resource for young scientists or graduate-level students who want to learn how to introduce flow techniques into their experiments, and for experts who need specific and technical details to develop complete experimental systems. - Includes descriptions of the theoretical and technical bases of the most important flow techniques - Focuses on new trends in the field such as using flow techniques for radioactivity and environmental applications - Features instructions for coupling different types of detectors online with flow systems
The thoroughly revised new edition of this best-seller, presents the wide use of AAS in numerous fields of application. The comparison between the different AAS techniques enables the reader to find the best solution for his analytical problem. Authors Bernhard Welz and Michael Sperling have succeeded in finding a balance between theoretical fundamentals and practical applications. The new chapter 'physical fundamentals' describes the basic principles of AAS. The development of AAS is now described in a separate chapter. Further new chapters are devoted to the latest developments in the field of flow injection and the use of computers for laboratory automation. Methodological progress e. g. speciation analysis is also covered in this new edition. The index and the extensive bibliography make this book a unique source of information. It will prove useful not only for analytical chemists, out also spectroscopists in industry, institutes, and universities. Atomic Absorption Spectrometry will also be invaluable for clinics and research institutes in the fields of biochemistry, medicine, food technology, geology, metallurgy, petrochemistry, and mineralogy.
This first book to cover different injection techniques not only provides a comprehensive overview of methodologies and instrumentation, it also covers recent advances in flow method analysis, with an appendix listing additional databases, instrumentation and methods on the Internet. A definite must-have for every chemist working in this field.
This volume continues the series' cutting-edge reviews on developments in this field. Since its invention in the 1920s, electrostatic precipitation has been extensively used in industrial hygiene to remove dust and particulate matter from gases before entering the atmosphere. This combination of electrostatic precipitation is reported upon in the first chapter. Following this, chapter two reviews recent advances in the area of chemical modification in electrothermal atomization. Chapter three consists of a review which deal with advances and uses of electrothermal atomization atomic absorption spectrometry. Flow injection atomic spectroscopy has developed rapidly in recent years and after a general introduction, various aspects of this technique are looked at in chapter four. Finally, in chapter five the use of various spectrometric techniques for the determination of mercury are described.
Sample Introduction Systems in ICPMS and ICPOES provides an in-depth analysis of sample introduction strategies, including flow injection analysis and less common techniques, such as arc/spark ablation and direct sample insertion. The book critically evaluates what has been accomplished so far, along with what can be done to extend the capabilities of the technique for analyses of any type of sample, such as aqueous, gaseous or solid. The latest progress made in fields, such as FIA, ETV, LC-ICP-MS and CE-ICP-MS is included and critically discussed. The book addresses problems related to the optimization of the system, peak dispersion and calibration and automatization. - Provides contributions from recognized experts that give credibility to each chapter as a reference source - Presents a single source, providing the big picture for ICPMS and ICPOES - Covers theory, methods, selected applications and discrete sampling techniques - Includes access to core data for practical work, comparison of results and decision-making