Flow-Induced Vibrations

Flow-Induced Vibrations

Author: Eduard Naudascher

Publisher: Courier Corporation

Published: 2012-03-27

Total Pages: 434

ISBN-13: 0486136132

DOWNLOAD EBOOK

Despite their variety, the vibration phenomena from many different engineering fields can be classified into a relatively few basic excitation mechanisms. The classification enables engineers to identify all possible sources of excitation in a given system and to assess potential dangers. This graduate-level text presents a synthesis of research results and practical experience from disparate fields in the form of engineering guidelines. It is particularly geared toward assessing the possible sources of excitation in a flow system, in identifying the actual danger spots, and in finding appropriate remedial measures or cures. Flow-induced vibrations are presented in terms of their basic elements: body oscillators, fluid oscillators, and sources of excitation. By stressing these basic elements, the authors provide a basis for the transfer of knowledge from one system to another, as well as from one engineering field to another. In this manner, well-known theories on cylinders in cross-flow or well-executed solutions from the field of wind engineering--to name just two examples--may be useful in other systems or fields on which information is scarce. The unified approach is broad enough to permit treatment of the major excitation mechanism, yet simple enough to be of practical use.


Flow-induced Vibrations: an Engineering Guide

Flow-induced Vibrations: an Engineering Guide

Author: Eduard Naudascher

Publisher: Routledge

Published: 2017-11-13

Total Pages: 432

ISBN-13: 1351447866

DOWNLOAD EBOOK

Designed for engineers, this work considers flow-induced vibrations. It covers topics such as body oscillators; fluid loading and response of body oscillators; fluid oscillators; vibrations due to extraneously-induced excitation; and vibrations due to instability-induced excitation.


Flow-induced Vibration

Flow-induced Vibration

Author: Robert D. Blevins

Publisher:

Published: 2001-01-01

Total Pages: 477

ISBN-13: 9781575241838

DOWNLOAD EBOOK

Focuses on applications for offshore platforms and piping; and, wind-induced vibration of buildings, bridges, and towers. This title also focuses on acoustic and mechanical vibration of heat exchangers, power lines, and process ducting.


Flow Induced Vibrations

Flow Induced Vibrations

Author: Tomomichi Nakamura

Publisher: Elsevier

Published: 2008-06-17

Total Pages: 311

ISBN-13: 0080559131

DOWNLOAD EBOOK

In many plants, vibration and noise problems occur due to fluid flow, which can greatly disrupt smooth plant operations. These flow-related phenomena are called Flow-Induced Vibration.This book explains how and why such vibrations happen and provides hints and tips on how to avoid them in future plant design. The world-leading author team doesn't assume prior knowledge of mathematical methods and provide the reader with information on the basics of modeling. The book includes several practical examples and thorough explanations of the structure, the evaluation method and the mechanisms to aid understanding of flow induced vibration. - Helps ensure smooth plant operations - Explains the structure, evaluation method and mechanisms - Shows how to avoid vibrations in future plant design


Flow-Induced Pulsation and Vibration in Hydroelectric Machinery

Flow-Induced Pulsation and Vibration in Hydroelectric Machinery

Author: Peter Dörfler

Publisher: Springer Science & Business Media

Published: 2012-08-28

Total Pages: 257

ISBN-13: 1447142527

DOWNLOAD EBOOK

Since the 1970’s, an increasing amount of specialized research has focused on the problems created by instability of internal flow in hydroelectric power plants. However, progress in this field is hampered by the interdisciplinary nature of the subject, between fluid mechanics, structural mechanics and hydraulic transients. Flow-induced Pulsation and Vibration in Hydroelectric Machinery provides a compact guidebook explaining the many different underlying physical mechanisms and their possible effects. Typical phenomena are described to assist in the proper diagnosis of problems and various key strategies for solution are compared and considered with support from practical experience and real-life examples. The link between state-of the-art CFD computation and notorious practical problems is discussed and quantitative data is provided on normal levels of vibration and pulsation so realistic limits can be set for future projects. Current projects are also addressed as the possibilities and limitations of reduced-scale model tests for prediction of prototype performance are explained. Engineers and project planners struggling with the practical problems will find Flow-induced Pulsation and Vibration in Hydroelectric Machinery to be a comprehensive and convenient reference covering key topics and ideas across a range of relevant disciplines.


Flow-Induced Vibration Handbook for Nuclear and Process Equipment

Flow-Induced Vibration Handbook for Nuclear and Process Equipment

Author: Michel J. Pettigrew

Publisher: John Wiley & Sons

Published: 2021-10-29

Total Pages: 498

ISBN-13: 1119810981

DOWNLOAD EBOOK

Explains the mechanisms governing flow-induced vibrations and helps engineers prevent fatigue and fretting-wear damage at the design stage Fatigue or fretting-wear damage in process and plant equipment caused by flow-induced vibration can lead to operational disruptions, lost production, and expensive repairs. Mechanical engineers can help prevent or mitigate these problems during the design phase of high capital cost plants such as nuclear power stations and petroleum refineries by performing thorough flow-induced vibration analysis. Accordingly, it is critical for mechanical engineers to have a firm understanding of the dynamic parameters and the vibration excitation mechanisms that govern flow-induced vibration. Flow-Induced Vibration Handbook for Nuclear and Process Equipment provides the knowledge required to prevent failures due to flow-induced vibration at the design stage. The product of more than 40 years of research and development at the Canadian Nuclear Laboratories, this authoritative reference covers all relevant aspects of flow-induced vibration technology, including vibration failures, flow velocity analysis, vibration excitation mechanisms, fluidelastic instability, periodic wake shedding, acoustic resonance, random turbulence, damping mechanisms, and fretting-wear predictions. Each in-depth chapter contains the latest available lab data, a parametric analysis, design guidelines, sample calculations, and a brief review of modelling and theoretical considerations. Written by a group of leading experts in the field, this comprehensive single-volume resource: Helps readers understand and apply techniques for preventing fatigue and fretting-wear damage due to flow-induced vibration at the design stage Covers components including nuclear reactor internals, nuclear fuels, piping systems, and various types of heat exchangers Features examples of vibration-related failures caused by fatigue or fretting-wear in nuclear and process equipment Includes a detailed overview of state-of-the-art flow-induced vibration technology with an emphasis on two-phase flow-induced vibration Covering all relevant aspects of flow-induced vibration technology, Flow-Induced Vibration Handbook for Nuclear and Process Equipment is required reading for professional mechanical engineers and researchers working in the nuclear, petrochemical, aerospace, and process industries, as well as graduate students in mechanical engineering courses on flow-induced vibration.


Flinovia—Flow Induced Noise and Vibration Issues and Aspects-III

Flinovia—Flow Induced Noise and Vibration Issues and Aspects-III

Author: Elena Ciappi

Publisher: Springer Nature

Published: 2021-04-29

Total Pages: 400

ISBN-13: 3030648079

DOWNLOAD EBOOK

This volume gathers the latest advances and innovations in the field of flow-induced vibration and noise, as presented by leading international researchers at the 3rd International Symposium on Flow Induced Noise and Vibration Issues and Aspects (FLINOVIA), which was held in Lyon, France, in September 2019. It explores topics such as turbulent boundary layer-induced vibration and noise, tonal noise, noise due to ingested turbulence, fluid-structure interaction problems, and noise control techniques. The authors’ backgrounds represent a mix of academia, government, and industry, and several papers include applications to important problems for underwater vehicles, aerospace structures and commercial transportation. The book offers a valuable reference guide for all those interested in measurement, modelling, simulation and reproduction of the flow excitation and flow induced structural response.


Flow-Induced Vibration

Flow-Induced Vibration

Author: S. Ziada

Publisher: CRC Press

Published: 2000-01-01

Total Pages: 863

ISBN-13: 1482283743

DOWNLOAD EBOOK

Flow-induced vibrations and noise continue to cause problems in a wide range of engineering applications ranging from civil engineering and marine structures to power generation and chemical processing. These proceedings bring together more than a hundred papers dealing with a variety of topics relating to flow-induced vibration and noise. The cont


Pipe Flow

Pipe Flow

Author: Donald C. Rennels

Publisher: John Wiley & Sons

Published: 2022-05-10

Total Pages: 387

ISBN-13: 111975643X

DOWNLOAD EBOOK

Pipe Flow Provides detailed coverage of hydraulic analysis of piping systems, revised and updated throughout Pipe Flow: A Practical and Comprehensive Guide provides the information required to design and analyze piping systems for distribution systems, power plants, and other industrial operations. Divided into three parts, this authoritative resource describes the methodology for solving pipe flow problems, presents loss coefficient data for a wide range of piping components, and examines pressure drop, cavitation, flow-induced vibration, and other flow phenomena that affect the performance of piping systems. Throughout the book, sample problems and worked solutions illustrate the application of core concepts and techniques. The second edition features revised and expanded information throughout, including an entirely new chapter that presents a mixing section flow model for accurately predicting jet pump performance. This edition includes additional examples, supplemental problems, and a new appendix of the speed of sound in water. With clear explanations, expert guidance, and precise hydraulic computations, this classic reference text remains required reading for anyone working to increase the quality and efficiency of modern piping systems. Discusses the fundamental physical properties of fluids and the nature of fluid flow Demonstrates the accurate prediction and management of pressure loss for a variety of piping components and piping systems Reviews theoretical research on fluid flow in piping and its components Presents important loss coefficient data with straightforward tables, diagrams, and equations Includes full references, further reading sections, and numerous example problems with solution Pipe Flow: A Practical and Comprehensive Guide, Second Edition is an excellent textbook for engineering students, and an invaluable reference for professional engineers engaged in the design, operation, and troubleshooting of piping systems.