Flood Studies Report: Hydrological studies
Author: Institute of Hydrology (Great Britain)
Publisher:
Published: 1975
Total Pages: 588
ISBN-13:
DOWNLOAD EBOOKRead and Download eBook Full
Author: Institute of Hydrology (Great Britain)
Publisher:
Published: 1975
Total Pages: 588
ISBN-13:
DOWNLOAD EBOOKAuthor:
Publisher: IICA
Published:
Total Pages: 430
ISBN-13:
DOWNLOAD EBOOKAuthor: Estados Unidos. Bureau of Reclamation
Publisher:
Published: 1989
Total Pages: 243
ISBN-13: 9789990011388
DOWNLOAD EBOOKAuthor: V.P. Singh
Publisher: Springer Science & Business Media
Published: 2012-12-06
Total Pages: 424
ISBN-13: 9400939574
DOWNLOAD EBOOKFloods constitute a persistent and serious problem throughout the United States and many other parts of the world. They are responsible for losses amounting to billions of dollars and scores of deaths annually. Virtually all parts of the nation--coastal, moun tainous and rural--are affected by them. Two aspects of the problem of flooding that have long been topics of scientific inquiry are flood frequency and risk analyses. Many new, even improved, tech niques have recently been developed for performing these analyses. Nevertheless, actual experience points out that the frequency of say a 100-year flood, in lieu of being encountered on the average once in one hundred years, may be as little as once in 25 years. It is therefore appropriate to pause and ask where we are, where we are going and where we ought to be going with regard to the technology of flood frequency and risk analyses. One way to address these ques tions is to provide a forum where people from all quarters of the world can assemble, discuss and share their experience and expertise pertaining to flood frequency and risk analyses. This is what con stituted the motivation for organizing the International Symposium on Flood Frequency and Risk Analyses held May 14-17, 1986, at Louisiana State University, Baton Rouge, Louisiana.
Author: V.P. Singh
Publisher: Springer Science & Business Media
Published: 2012-12-06
Total Pages: 590
ISBN-13: 9401103895
DOWNLOAD EBOOKWater is vital to life, maintenance of ecological balance, economic development, and sustenance of civilization. Planning and management of water resources and its optimal use are a matter of urgency for most countries of the world, and even more so for India with a huge population. Growing population and expanding economic activities exert increasing demands on water for varied needs--domestic, industrial, agricultural, power generation, navigation, recreation, etc. In India, agriculture is the highest user of water. The past three decades have witnessed numerous advances as well as have presented intriguing challenges and exciting opportunities in hydrology and water resources. Compounding them has been the growing environmental consciousness. Nowhere are these challenges more apparent than in India. As we approach the twenty first century, it is entirely fitting to take stock of what has been accomplished and what remains to be accomplished, and what accomplishments are relevant, with particular reference to Indian conditions.
Author: Donald Knight
Publisher: CRC Press
Published: 2005-11-17
Total Pages: 626
ISBN-13: 9781439824702
DOWNLOAD EBOOKFlooding accounts for one-third of natural disasters worldwide and for over half the deaths which occur as a result of natural disasters. As the frequency and volume of flooding increases, as a result of climate change, there is a new urgency amongst researchers and professionals working in flood risk management. River Basin Modelling for Flood Risk Mitigation brings together thirty edited papers by leading experts who gathered for the European Union’s Advanced Study Course at the University of Birmingham, UK. The scope of the course ranged from issues concerning the protection of life, to river restoration and wetland management. A variety of topics is covered in the book including climate change, hydro-informatics, hydro-meterology, river flow forecasting systems and dam-break modelling. The approach is broad, but integrated, providing an attractive and informative package that will satisfy researchers and professionals, while offering a sound introduction to students in Engineering and Geography.
Author: Water Resources Council (U.S.). Hydrology Committee
Publisher:
Published: 1975
Total Pages: 232
ISBN-13:
DOWNLOAD EBOOKAuthor: Elizabeth Shaw
Publisher: CRC Press
Published: 1994-12-09
Total Pages: 590
ISBN-13: 0748744487
DOWNLOAD EBOOKThis introduction to hydrology is essentially practical, emphasising the application of hydrological knowledge to the solution of engineering problems.
Author: Mesfin H. Tewolde
Publisher: Universal-Publishers
Published: 2008-03-27
Total Pages: 134
ISBN-13: 159942665X
DOWNLOAD EBOOKRiver stage or flow rates are required for the design and evaluation of hydraulic structures. Most river reaches are ungauged and a methodology is needed to estimate the stages, or rates of flow, at specific locations in streams where no measurements are available. Flood routing techniques are utilised to estimate the stages, or rates of flow, in order to predict flood wave propagation along river reaches. Models can be developed for gauged catchments and their parameters related to physical characteristics such as slope, reach width, reach length so that the approach can be applied to ungauged catchments in the region. The objective of this study is to assess Muskingum-based methods for flow routing in ungauged river reaches, both with and without lateral inflows. Using observed data, the model parameters were calibrated to assess performance of the Muskingum flood routing procedures and the Muskingum-Cunge method was then assessed using catchment derived parameters for use in ungauged river reaches. The Muskingum parameters were derived from empirically estimated variables and variables estimated from assumed river cross-sections within the selected river reaches used. Three sub-catchments in the Thukela catchment in KwaZulu-Natal, South Africa were selected for analyses, with river lengths of 4, 21 and 54 km. The slopes of the river reaches and reach lengths were derived from a digital elevation model. Manning roughness coefficients were estimated from field observations. Flow variables such as velocity, hydraulic radius, wetted perimeters, flow depth and top flow width were determined from empirical equations and cross-sections of the selected rivers. Lateral inflows to long river reaches were estimated from the Saint-Venant equation. Observed events were extracted for each sub-catchment to assess the Muskingum-Cunge parameter estimation method and Three-parameter Muskingum method. The extracted events were further analysed using empirically estimated flow variables. The performances of the methods were evaluated by comparing both graphically and statistically the simulated and observed hydrographs. Sensitivity analyses were undertaken using three selected events and a 50% variation in selected input variables was used to identify sensitive variables. The performance of the calibrated Muskingum-Cunge flood routing method using observed hydrographs displayed acceptable results. Therefore, the Muskingum-Cunge flood routing method was applied in ungauged catchments, with variables estimated empirically. The results obtained shows that the computed outflow hydrographs generated using the Muskingum-Cunge method, with the empirically estimated variables and variables estimated from cross-sections of the selected rivers resulted in reasonably accurate computed outflow hydrographs with respect to peak discharge, timing of peak flow and volume. From this study, it is concluded that the Muskingum-Cunge method can be applied to route floods in ungauged catchments in the Thukela catchment and it is postulated that the method can be used to route floods in other ungauged rivers in South Africa.
Author: Christopher G. Collier
Publisher: John Wiley & Sons
Published: 2016-08-08
Total Pages: 406
ISBN-13: 1118414977
DOWNLOAD EBOOKHydrometeorology presents an introduction to relevant topics in the interdisciplinary fields of hydrology and meteorology. This book is one of the few books aiming to provide a balance between aspects of meteorological and hydrological processes. The transfer of energy and water between the land surface and lower atmosphere within the hydrological cycle is addressed followed by a description of the nature of precipitation, and how it is formed. Forecasting precipitation is reviewed on all scales, and the range of rainfall-runoff models and coastal surge models and forecasts (including tsunamis) which have been, and are being, used are discussed. The mechanisms of snow, ice (glacier, sea and tundra), evaporation and transpiration, how drought occurs and the representation of wind are described. How rainfall (including radar measurements) and river flow information is gathered and analysed (including, frequency analysis, Probable Maximum Precipitation and Flood) are presented. Satellite measurements of precipitation are discussed. Examples of major past floods and droughts are given. Past and future climate change, which is included, underpins the importance of hydro-meteorological processes. The structure of the general circulation of the atmosphere and how it influences weather and climate including the Hadley, Ferrel and Polar cells, the Trade winds and the El Nino, is outlined. Finally, the influence of urban areas on rainfall formation, dealing with urban drainage and air quality are described. Each chapter ends with one or two specific points as appendices, elements discussed in the chapter and a list of sample problems to aid understanding. Readership: This book is aimed at 3rd year undergraduate and postgraduate students on hydrology/hydrometeorology, environmental science and geography courses. Professionals in environmental protection agencies and consultancies will also find the book of great interest. It contains a balance of both the physics and mathematics which underpin such courses and activities.