Floer Homology Groups in Yang-Mills Theory

Floer Homology Groups in Yang-Mills Theory

Author: S. K. Donaldson

Publisher: Cambridge University Press

Published: 2002-01-10

Total Pages: 254

ISBN-13: 9781139432603

DOWNLOAD EBOOK

The concept of Floer homology was one of the most striking developments in differential geometry. It yields rigorously defined invariants which can be viewed as homology groups of infinite-dimensional cycles. The ideas led to great advances in the areas of low-dimensional topology and symplectic geometry and are intimately related to developments in Quantum Field Theory. The first half of this book gives a thorough account of Floer's construction in the context of gauge theory over 3 and 4-dimensional manifolds. The second half works out some further technical developments of the theory, and the final chapter outlines some research developments for the future - including a discussion of the appearance of modular forms in the theory. The scope of the material in this book means that it will appeal to graduate students as well as those on the frontiers of the subject.


Handbook of Differential Geometry

Handbook of Differential Geometry

Author: Franki J.E. Dillen

Publisher: Elsevier

Published: 2005-11-29

Total Pages: 575

ISBN-13: 0080461204

DOWNLOAD EBOOK

In the series of volumes which together will constitute the "Handbook of Differential Geometry" we try to give a rather complete survey of the field of differential geometry. The different chapters will both deal with the basic material of differential geometry and with research results (old and recent).All chapters are written by experts in the area and contain a large bibliography. In this second volume a wide range of areas in the very broad field of differential geometry is discussed, as there are Riemannian geometry, Lorentzian geometry, Finsler geometry, symplectic geometry, contact geometry, complex geometry, Lagrange geometry and the geometry of foliations. Although this does not cover the whole of differential geometry, the reader will be provided with an overview of some its most important areas.. Written by experts and covering recent research. Extensive bibliography. Dealing with a diverse range of areas. Starting from the basics


Proceedings Of The International Congress Of Mathematicians 2018 (Icm 2018) (In 4 Volumes)

Proceedings Of The International Congress Of Mathematicians 2018 (Icm 2018) (In 4 Volumes)

Author: Boyan Sirakov

Publisher: World Scientific

Published: 2019-02-27

Total Pages: 5393

ISBN-13: 9813272899

DOWNLOAD EBOOK

The Proceedings of the ICM publishes the talks, by invited speakers, at the conference organized by the International Mathematical Union every 4 years. It covers several areas of Mathematics and it includes the Fields Medal and Nevanlinna, Gauss and Leelavati Prizes and the Chern Medal laudatios.


Geometry and Physics

Geometry and Physics

Author: Rui Loja Fernandes

Publisher: American Institute of Physics

Published: 2008-07-03

Total Pages: 236

ISBN-13:

DOWNLOAD EBOOK

Lisbon, Portugal, 5-8 September 2007


The Floer Memorial Volume

The Floer Memorial Volume

Author: Helmut Hofer

Publisher: Birkhäuser

Published: 2012-12-06

Total Pages: 688

ISBN-13: 3034892179

DOWNLOAD EBOOK

Andreas Floer died on May 15, 1991 an untimely and tragic death. His visions and far-reaching contributions have significantly influenced the developments of mathematics. His main interests centered on the fields of dynamical systems, symplectic geometry, Yang-Mills theory and low dimensional topology. Motivated by the global existence problem of periodic solutions for Hamiltonian systems and starting from ideas of Conley, Gromov and Witten, he developed his Floer homology, providing new, powerful methods which can be applied to problems inaccessible only a few years ago. This volume opens with a short biography and three hitherto unpublished papers of Andreas Floer. It then presents a collection of invited contributions, and survey articles as well as research papers on his fields of interest, bearing testimony of the high esteem and appreciation this brilliant mathematician enjoyed among his colleagues. Authors include: A. Floer, V.I. Arnold, M. Atiyah, M. Audin, D.M. Austin, S.M. Bates, P.J. Braam, M. Chaperon, R.L. Cohen, G. Dell' Antonio, S.K. Donaldson, B. D'Onofrio, I. Ekeland, Y. Eliashberg, K.D. Ernst, R. Finthushel, A.B. Givental, H. Hofer, J.D.S. Jones, I. McAllister, D. McDuff, Y.-G. Oh, L. Polterovich, D.A. Salamon, G.B. Segal, R. Stern, C.H. Taubes, C. Viterbo, A. Weinstein, E. Witten, E. Zehnder.


Strings and Geometry

Strings and Geometry

Author: Clay Mathematics Institute. Summer School

Publisher: American Mathematical Soc.

Published: 2004

Total Pages: 396

ISBN-13: 9780821837153

DOWNLOAD EBOOK

Contains selection of expository and research article by lecturers at the school. Highlights current interests of researchers working at the interface between string theory and algebraic supergravity, supersymmetry, D-branes, the McKay correspondence andFourer-Mukai transform.


Lagrangian Intersection Floer Theory

Lagrangian Intersection Floer Theory

Author: Kenji Fukaya

Publisher: American Mathematical Soc.

Published: 2010-06-21

Total Pages: 426

ISBN-13: 0821852507

DOWNLOAD EBOOK

This is a two-volume series research monograph on the general Lagrangian Floer theory and on the accompanying homological algebra of filtered $A_\infty$-algebras. This book provides the most important step towards a rigorous foundation of the Fukaya category in general context. In Volume I, general deformation theory of the Floer cohomology is developed in both algebraic and geometric contexts. An essentially self-contained homotopy theory of filtered $A_\infty$ algebras and $A_\infty$ bimodules and applications of their obstruction-deformation theory to the Lagrangian Floer theory are presented. Volume II contains detailed studies of two of the main points of the foundation of the theory: transversality and orientation. The study of transversality is based on the virtual fundamental chain techniques (the theory of Kuranishi structures and their multisections) and chain level intersection theories. A detailed analysis comparing the orientations of the moduli spaces and their fiber products is carried out. A self-contained account of the general theory of Kuranishi structures is also included in the appendix of this volume.