Boundary-layer Transition Results from the F-16XL-2 Supersonic Laminar Flow Control Experiment

Boundary-layer Transition Results from the F-16XL-2 Supersonic Laminar Flow Control Experiment

Author: Laurie A. Marshall

Publisher:

Published: 1999

Total Pages: 58

ISBN-13:

DOWNLOAD EBOOK

A variable-porosity suction glove has been flown on the F-16XL-2 aircraft to demonstrate the feasibility of this technology for the proposed High-Speed Civil Transport (HSCT). Boundary-layer transition data have been obtained on the titanium glove primarily at Mach 2.0 and altitudes of 53,000-55,000 ft. The objectives of this supersonic laminar flow control flight experiment have been to achieve 50- to 60-percent-chord laminar flow on a highly swept wing at supersonic speeds and to provide data to validate codes and suction design. The most successful laminar flow results have not been obtained at the glove design point (Mach 1.9 at an altitude of 50,000 ft). At Mach 2.0 and an altitude of 53,000 ft, which corresponds to a Reynolds number of 22.7 multiplied by 10[factor 6], optimum suction levels have allowed long runs of a minimum of 46-percent-chord laminar flow to be achieved. This paper discusses research variables that directly impact the ability to obtain laminar flow and techniques to correct for these variables.


Stability of Time Dependent and Spatially Varying Flows

Stability of Time Dependent and Spatially Varying Flows

Author: D.L. Dwoyer

Publisher: Springer Science & Business Media

Published: 2013-03-09

Total Pages: 361

ISBN-13: 1461247241

DOWNLOAD EBOOK

This volume is the collection of papers presented at the workshop on 'The Stability of Spatially Varying and Time Dependent Flows" sponsored by the Institute for Computer Applications in Science and Engineering (lCASE) and NASA Langley Research Center (LaRC) during August 19- 23, 1985. The purpose of this workshop was to bring together some of the experts in the field for an exchange of ideas to update the current status of knowledge and to help identify trends for future research. Among the invited speakers were D.M. Bushnell, M. Goldstein, P. Hall, Th. Herbert, R.E. Kelly, L. Mack, A.H. Nayfeh, F.T. Smith, and C. von Kerczek. The contributed papers were by A. Bayliss, R. Bodonyi, S. Cowley, C. Grosch, S. Lekoudis, P. Monkewitz, A. Patera, and C. Streett. In the first article, Bushnell provides a historical background on laminar flow control (LFC) research and summarizes the crucial role played by stability theory in LFC system design. He also identifies problem areas in stability theory requiring further research from the view-point of ap plications to LFC design. It is an excellent article for theoreticians looking for some down-to-earth applications of stability theory.