Order Structure and Topological Methods in Nonlinear Partial Differential Equations

Order Structure and Topological Methods in Nonlinear Partial Differential Equations

Author: Yihong Du

Publisher: World Scientific

Published: 2006

Total Pages: 202

ISBN-13: 9812566244

DOWNLOAD EBOOK

The maximum principle induces an order structure for partial differential equations, and has become an important tool in nonlinear analysis. This book is the first of two volumes to systematically introduce the applications of order structure in certain nonlinear partial differential equation problems.The maximum principle is revisited through the use of the Krein-Rutman theorem and the principal eigenvalues. Its various versions, such as the moving plane and sliding plane methods, are applied to a variety of important problems of current interest. The upper and lower solution method, especially its weak version, is presented in its most up-to-date form with enough generality to cater for wide applications. Recent progress on the boundary blow-up problems and their applications are discussed, as well as some new symmetry and Liouville type results over half and entire spaces. Some of the results included here are published for the first time.


First-Order Partial Differential Equations, Vol. 1

First-Order Partial Differential Equations, Vol. 1

Author: Hyun-Ku Rhee

Publisher: Courier Corporation

Published: 2014-05-05

Total Pages: 561

ISBN-13: 0486146200

DOWNLOAD EBOOK

This first volume of a highly regarded two-volume text is fully usable on its own. After going over some of the preliminaries, the authors discuss mathematical models that yield first-order partial differential equations; motivations, classifications, and some methods of solution; linear and semilinear equations; chromatographic equations with finite rate expressions; homogeneous and nonhomogeneous quasilinear equations; formation and propagation of shocks; conservation equations, weak solutions, and shock layers; nonlinear equations; and variational problems. Exercises appear at the end of most sections. This volume is geared to advanced undergraduates or first-year grad students with a sound understanding of calculus and elementary ordinary differential equations. 1986 edition. 189 black-and-white illustrations. Author and subject indices.


Partial Differential Equations

Partial Differential Equations

Author: Walter A. Strauss

Publisher: John Wiley & Sons

Published: 2007-12-21

Total Pages: 467

ISBN-13: 0470054565

DOWNLOAD EBOOK

Our understanding of the fundamental processes of the natural world is based to a large extent on partial differential equations (PDEs). The second edition of Partial Differential Equations provides an introduction to the basic properties of PDEs and the ideas and techniques that have proven useful in analyzing them. It provides the student a broad perspective on the subject, illustrates the incredibly rich variety of phenomena encompassed by it, and imparts a working knowledge of the most important techniques of analysis of the solutions of the equations. In this book mathematical jargon is minimized. Our focus is on the three most classical PDEs: the wave, heat and Laplace equations. Advanced concepts are introduced frequently but with the least possible technicalities. The book is flexibly designed for juniors, seniors or beginning graduate students in science, engineering or mathematics.


Theory and Application of Hyperbolic Systems of Quasilinear Equations

Theory and Application of Hyperbolic Systems of Quasilinear Equations

Author: Hyun-Ku Rhee

Publisher: Courier Corporation

Published: 2001-01-01

Total Pages: 582

ISBN-13: 9780486419947

DOWNLOAD EBOOK

Second volume of a 2-volume set examines physical systems that can usefully be modeled by equations of the first order. The book begins with a consideration of pairs of quasilinear hyperbolic equations of the first order and goes on to explore multicomponent chromatography, complications of counter-current moving-bed adsorbers, more. Exercises. 1989 edition. 198 black-and-white illustrations. Author and subject indices.


Partial Differential Equations

Partial Differential Equations

Author: Lawrence C. Evans

Publisher: American Mathematical Soc.

Published: 2010

Total Pages: 778

ISBN-13: 0821849743

DOWNLOAD EBOOK

This is the second edition of the now definitive text on partial differential equations (PDE). It offers a comprehensive survey of modern techniques in the theoretical study of PDE with particular emphasis on nonlinear equations. Its wide scope and clear exposition make it a great text for a graduate course in PDE. For this edition, the author has made numerous changes, including a new chapter on nonlinear wave equations, more than 80 new exercises, several new sections, a significantly expanded bibliography. About the First Edition: I have used this book for both regular PDE and topics courses. It has a wonderful combination of insight and technical detail...Evans' book is evidence of his mastering of the field and the clarity of presentation (Luis Caffarelli, University of Texas) It is fun to teach from Evans' book. It explains many of the essential ideas and techniques of partial differential equations ...Every graduate student in analysis should read it. (David Jerison, MIT) I use Partial Differential Equations to prepare my students for their Topic exam, which is a requirement before starting working on their dissertation. The book provides an excellent account of PDE's ...I am very happy with the preparation it provides my students. (Carlos Kenig, University of Chicago) Evans' book has already attained the status of a classic. It is a clear choice for students just learning the subject, as well as for experts who wish to broaden their knowledge ...An outstanding reference for many aspects of the field. (Rafe Mazzeo, Stanford University.


Introduction to Partial Differential Equations

Introduction to Partial Differential Equations

Author: Peter J. Olver

Publisher: Springer Science & Business Media

Published: 2013-11-08

Total Pages: 636

ISBN-13: 3319020994

DOWNLOAD EBOOK

This textbook is designed for a one year course covering the fundamentals of partial differential equations, geared towards advanced undergraduates and beginning graduate students in mathematics, science, engineering, and elsewhere. The exposition carefully balances solution techniques, mathematical rigor, and significant applications, all illustrated by numerous examples. Extensive exercise sets appear at the end of almost every subsection, and include straightforward computational problems to develop and reinforce new techniques and results, details on theoretical developments and proofs, challenging projects both computational and conceptual, and supplementary material that motivates the student to delve further into the subject. No previous experience with the subject of partial differential equations or Fourier theory is assumed, the main prerequisites being undergraduate calculus, both one- and multi-variable, ordinary differential equations, and basic linear algebra. While the classical topics of separation of variables, Fourier analysis, boundary value problems, Green's functions, and special functions continue to form the core of an introductory course, the inclusion of nonlinear equations, shock wave dynamics, symmetry and similarity, the Maximum Principle, financial models, dispersion and solutions, Huygens' Principle, quantum mechanical systems, and more make this text well attuned to recent developments and trends in this active field of contemporary research. Numerical approximation schemes are an important component of any introductory course, and the text covers the two most basic approaches: finite differences and finite elements.


Partial Differential Equations

Partial Differential Equations

Author: Michael Shearer

Publisher: Princeton University Press

Published: 2015-03-01

Total Pages: 287

ISBN-13: 140086660X

DOWNLOAD EBOOK

An accessible yet rigorous introduction to partial differential equations This textbook provides beginning graduate students and advanced undergraduates with an accessible introduction to the rich subject of partial differential equations (PDEs). It presents a rigorous and clear explanation of the more elementary theoretical aspects of PDEs, while also drawing connections to deeper analysis and applications. The book serves as a needed bridge between basic undergraduate texts and more advanced books that require a significant background in functional analysis. Topics include first order equations and the method of characteristics, second order linear equations, wave and heat equations, Laplace and Poisson equations, and separation of variables. The book also covers fundamental solutions, Green's functions and distributions, beginning functional analysis applied to elliptic PDEs, traveling wave solutions of selected parabolic PDEs, and scalar conservation laws and systems of hyperbolic PDEs. Provides an accessible yet rigorous introduction to partial differential equations Draws connections to advanced topics in analysis Covers applications to continuum mechanics An electronic solutions manual is available only to professors An online illustration package is available to professors


Finite Difference Methods for Ordinary and Partial Differential Equations

Finite Difference Methods for Ordinary and Partial Differential Equations

Author: Randall J. LeVeque

Publisher: SIAM

Published: 2007-01-01

Total Pages: 356

ISBN-13: 9780898717839

DOWNLOAD EBOOK

This book introduces finite difference methods for both ordinary differential equations (ODEs) and partial differential equations (PDEs) and discusses the similarities and differences between algorithm design and stability analysis for different types of equations. A unified view of stability theory for ODEs and PDEs is presented, and the interplay between ODE and PDE analysis is stressed. The text emphasizes standard classical methods, but several newer approaches also are introduced and are described in the context of simple motivating examples.


Partial Differential Equations

Partial Differential Equations

Author: Friedrich Sauvigny

Publisher: Springer Science & Business Media

Published: 2006-10-04

Total Pages: 453

ISBN-13: 3540344594

DOWNLOAD EBOOK

This comprehensive two-volume textbook covers the whole area of Partial Differential Equations - of the elliptic, parabolic, and hyperbolic type - in two and several variables. Special emphasis is placed on the connection of PDEs and complex variable methods. In this first volume the following topics are treated: Integration and differentiation on manifolds, Functional analytic foundations, Brouwer's degree of mapping, Generalized analytic functions, Potential theory and spherical harmonics, Linear partial differential equations. We solve partial differential equations via integral representations in this volume, reserving functional analytic solution methods for Volume Two.