Progress in Scale Modeling

Progress in Scale Modeling

Author: Kozo Saito

Publisher: Springer Science & Business Media

Published: 2008-08-20

Total Pages: 529

ISBN-13: 1402086822

DOWNLOAD EBOOK

Scale modeling can play an important role in R&D. When engineers receive some ideas in new product development, they can test how the new design looks by bui- ing scale models and they can get an actual feeling with the prototype through their imagination. Professor Emori often said: “When children play with a toy airplane, their mind is wondering about the prototype airplane which they haven’t ridden. ” Children can use the scale model airplane as a means to enter into an imagi- tive world of wonder by testing in their own way how the actual airplane might function, how the actual airplane can maneuver aerodynamically, what might be the actual sound of a jet engine, how to safely land the actual airplane, and so on. This imagination that scale models can provide for children will help them later develop professional intuition. Physical scale models can never be entirely succe- fully replaced by computer screens where virtual models are displayed and fancy functions are demonstrated. Not only children but also adults can learn things by actually touching things only offered by physical models, helping all of us develop imagination and feeling eventually leading toward Kufu. Einstein’s famous “thought experiments [11],” which helped him to restructure modern physics may possibly and effectively be taught by letting researchers play with scale models!? References 1. I. Emori, K. Saito, and K. Sekimoto, Mokei Jikken no Riron to Ouyou (Scale Models in Engineering: Its Theory and Application), Gihodo, Tokyo, Third Edition, 2000.


Gas Turbine Emissions

Gas Turbine Emissions

Author: Tim C. Lieuwen

Publisher: Cambridge University Press

Published: 2013-07-08

Total Pages: 385

ISBN-13: 1107244242

DOWNLOAD EBOOK

The development of clean, sustainable energy systems is one of the pre-eminent issues of our time. Most projections indicate that combustion-based energy conversion systems will continue to be the predominant approach for the majority of our energy usage, and gas turbines will continue to be important combustion-based energy conversion devices for many decades to come, used for aircraft propulsion, ground-based power generation, and mechanical-drive applications. This book compiles the key scientific and technological knowledge associated with gas turbine emissions into a single authoritative source. The book has three sections: the first section reviews major issues with gas turbine combustion, including design approaches and constraints, within the context of emissions. The second section addresses fundamental issues associated with pollutant formation, modeling, and prediction. The third section features case studies from manufacturers and technology developers, emphasizing the system-level and practical issues that must be addressed in developing different types of gas turbines that emit pollutants at acceptable levels.