Elementary Concepts of Topology

Elementary Concepts of Topology

Author: Paul Alexandroff

Publisher: Courier Corporation

Published: 2012-08-13

Total Pages: 68

ISBN-13: 0486155064

DOWNLOAD EBOOK

Concise work presents topological concepts in clear, elementary fashion, from basics of set-theoretic topology, through topological theorems and questions based on concept of the algebraic complex, to the concept of Betti groups. Includes 25 figures.


A First Course in Topology

A First Course in Topology

Author: Robert A Conover

Publisher: Courier Corporation

Published: 2014-05-21

Total Pages: 276

ISBN-13: 0486780015

DOWNLOAD EBOOK

Students must prove all of the theorems in this undergraduate-level text, which features extensive outlines to assist in study and comprehension. Thorough and well-written, the treatment provides sufficient material for a one-year undergraduate course. The logical presentation anticipates students' questions, and complete definitions and expositions of topics relate new concepts to previously discussed subjects. Most of the material focuses on point-set topology with the exception of the last chapter. Topics include sets and functions, infinite sets and transfinite numbers, topological spaces and basic concepts, product spaces, connectivity, and compactness. Additional subjects include separation axioms, complete spaces, and homotopy and the fundamental group. Numerous hints and figures illuminate the text. Dover (2014) republication of the edition originally published by The Williams & Wilkins Company, Baltimore, 1975. See every Dover book in print at www.doverpublications.com


A Combinatorial Introduction to Topology

A Combinatorial Introduction to Topology

Author: Michael Henle

Publisher: Courier Corporation

Published: 1994-01-01

Total Pages: 340

ISBN-13: 9780486679662

DOWNLOAD EBOOK

Excellent text covers vector fields, plane homology and the Jordan Curve Theorem, surfaces, homology of complexes, more. Problems and exercises. Some knowledge of differential equations and multivariate calculus required.Bibliography. 1979 edition.


Introduction to Topology

Introduction to Topology

Author: Tej Bahadur Singh

Publisher: Springer

Published: 2019-05-17

Total Pages: 458

ISBN-13: 9811369542

DOWNLOAD EBOOK

Topology is a large subject with several branches, broadly categorized as algebraic topology, point-set topology, and geometric topology. Point-set topology is the main language for a broad range of mathematical disciplines, while algebraic topology offers as a powerful tool for studying problems in geometry and numerous other areas of mathematics. This book presents the basic concepts of topology, including virtually all of the traditional topics in point-set topology, as well as elementary topics in algebraic topology such as fundamental groups and covering spaces. It also discusses topological groups and transformation groups. When combined with a working knowledge of analysis and algebra, this book offers a valuable resource for advanced undergraduate and beginning graduate students of mathematics specializing in algebraic topology and harmonic analysis.


Introduction to Topology

Introduction to Topology

Author: Bert Mendelson

Publisher: Courier Corporation

Published: 2012-04-26

Total Pages: 226

ISBN-13: 0486135098

DOWNLOAD EBOOK

Concise undergraduate introduction to fundamentals of topology — clearly and engagingly written, and filled with stimulating, imaginative exercises. Topics include set theory, metric and topological spaces, connectedness, and compactness. 1975 edition.


Introduction to Topology

Introduction to Topology

Author: V. A. Vasilʹev

Publisher: American Mathematical Soc.

Published: 2001

Total Pages: 165

ISBN-13: 0821821628

DOWNLOAD EBOOK

This English translation of a Russian book presents the basic notions of differential and algebraic topology, which are indispensable for specialists and useful for research mathematicians and theoretical physicists. In particular, ideas and results are introduced related to manifolds, cell spaces, coverings and fibrations, homotopy groups, homology and cohomology, intersection index, etc. The author notes, "The lecture note origins of the book left a significant imprint on itsstyle. It contains very few detailed proofs: I tried to give as many illustrations as possible and to show what really occurs in topology, not always explaining why it occurs." He concludes, "As a rule, only those proofs (or sketches of proofs) that are interesting per se and have importantgeneralizations are presented."


Introduction to Topology

Introduction to Topology

Author: Crump W. Baker

Publisher:

Published: 1997

Total Pages: 155

ISBN-13: 9781575240084

DOWNLOAD EBOOK

The fundamental concepts of general topology are covered in this text whic can be used by students with only an elementary background in calculus. Chapters cover: sets; functions; topological spaces; subspaces; and homeomorphisms.


An Introduction to Algebraic Topology

An Introduction to Algebraic Topology

Author: Andrew H. Wallace

Publisher: Courier Corporation

Published: 2011-11-30

Total Pages: 212

ISBN-13: 0486152952

DOWNLOAD EBOOK

This self-contained treatment begins with three chapters on the basics of point-set topology, after which it proceeds to homology groups and continuous mapping, barycentric subdivision, and simplicial complexes. 1961 edition.


Topology

Topology

Author: Tai-Danae Bradley

Publisher: MIT Press

Published: 2020-08-18

Total Pages: 167

ISBN-13: 0262359626

DOWNLOAD EBOOK

A graduate-level textbook that presents basic topology from the perspective of category theory. This graduate-level textbook on topology takes a unique approach: it reintroduces basic, point-set topology from a more modern, categorical perspective. Many graduate students are familiar with the ideas of point-set topology and they are ready to learn something new about them. Teaching the subject using category theory--a contemporary branch of mathematics that provides a way to represent abstract concepts--both deepens students' understanding of elementary topology and lays a solid foundation for future work in advanced topics.