This text provides a comprehensive treatment of finite sample statistics and econometrics. Within this framework, the book discusses the basic analytical tools of finite sample econometrics and explores their applications to models covered in a first year graduate course in econometrics.
This book was first published in 2007. The small sample properties of estimators and tests are frequently too complex to be useful or are unknown. Much econometric theory is therefore developed for very large or asymptotic samples where it is assumed that the behaviour of estimators and tests will adequately represent their properties in small samples. Refined asymptotic methods adopt an intermediate position by providing improved approximations to small sample behaviour using asymptotic expansions. Dedicated to the memory of Michael Magdalinos, whose work is a major contribution to this area, this book contains chapters directly concerned with refined asymptotic methods. In addition, there are chapters focusing on new asymptotic results; the exploration through simulation of the small sample behaviour of estimators and tests in panel data models; and improvements in methodology. With contributions from leading econometricians, this collection will be essential reading for researchers and graduate students concerned with the use of asymptotic methods in econometric analysis.
This book is intended to provide a somewhat more comprehensive and unified treatment of large sample theory than has been available previously and to relate the fundamental tools of asymptotic theory directly to many of the estimators of interest to econometricians. In addition, because economic data are generated in a variety of different contexts (time series, cross sections, time series--cross sections), we pay particular attention to the similarities and differences in the techniques appropriate to each of these contexts.
This book covers important topics in econometrics. It discusses methods for efficient estimation in models defined by unconditional and conditional moment restrictions, inference in misspecified models, generalized empirical likelihood estimators, and alternative asymptotic approximations. The first chapter provides a general overview of established nonparametric and parametric approaches to estimation and conventional frameworks for statistical inference. The next several chapters focus on the estimation of models based on moment restrictions implied by economic theory. The final chapters cover nonconventional asymptotic tools that lead to improved finite-sample inference.
This book provides a comprehensive and unified treatment of finite sample statistics and econometrics, a field that has evolved in the last five decades. Within this framework, this is the first book which discusses the basic analytical tools of finite sample econometrics, and explores their applications to models covered in a first year graduate course in econometrics, including repression functions, dynamic models, forecasting, simultaneous equations models, panel data models, and censored models. Both linear and nonlinear models, as well as models with normal and non-normal errors, are studied. Finite sample results are extremely useful for applied researchers doing proper econometric analysis with small or moderately large sample data. Finite sample econometrics also provides the results for very large (asymptotic) samples. This book provides simple and intuitive presentations of difficult concepts, unified and heuristic developments of methods, and applications to various econometric models. It provides a new perspective on teaching and research in econometrics, statistics, and other applied subjects.
Monte Carlo Simulation for Econometricians presents the fundamentals of Monte Carlo simulation (MCS), pointing to opportunities not often utilized in current practice, especially with regards to designing their general setup, controlling their accuracy, recognizing their shortcomings, and presenting their results in a coherent way. The author explores the properties of classic econometric inference techniques by simulation. The first three chapters focus on the basic tools of MCS. After treating the basic tools of MCS, Chapter 4 examines the crucial elements of analyzing the properties of asymptotic test procedures by MCS. Chapter 5 examines more general aspects of MCS, such as its history, possibilities to increase its efficiency and effectiveness, and whether synthetic random exogenous variables should be kept fixed over all the experiments or be treated as genuinely random and thus redrawn every replication. The simulation techniques that we discuss in the first five chapters are often addressed as naive or classic Monte Carlo methods. However, simulation can also be used not just for assessing the qualities of inference techniques, but also directly for obtaining inference in practice from empirical data. Various advanced inference techniques have been developed which incorporate simulation techniques. An early example of this is Monte Carlo testing, which corresponds to the parametric bootstrap technique. Chapter 6 highlights such techniques and presents a few examples of (semi-)parametric bootstrap techniques. This chapter also demonstrates that the bootstrap is not an alternative to MCS but just another practical inference technique, which uses simulation to produce econometric inference. Each chapter includes exercises allowing the reader to immerse in performing and interpreting MCS studies. The material has been used extensively in courses for undergraduate and graduate students. The various chapters all contain illustrations which throw light on what uses can be made from MCS to discover the finite sample properties of a broad range of alternative econometric methods with a focus on the rather basic models and techniques.
The most authoritative and comprehensive synthesis of modern econometrics available Econometrics provides first-year graduate students with a thoroughly modern introduction to the subject, covering all the standard material necessary for understanding the principal techniques of econometrics, from ordinary least squares through cointegration. The book is distinctive in developing both time-series and cross-section analysis fully, giving readers a unified framework for understanding and integrating results. Econometrics covers all the important topics in a succinct manner. All the estimation techniques that could possibly be taught in a first-year graduate course, except maximum likelihood, are treated as special cases of GMM (generalized methods of moments). Maximum likelihood estimators for a variety of models, such as probit and tobit, are collected in a separate chapter. This arrangement enables students to learn various estimation techniques in an efficient way. Virtually all the chapters include empirical applications drawn from labor economics, industrial organization, domestic and international finance, and macroeconomics. These empirical exercises provide students with hands-on experience applying the techniques covered. The exposition is rigorous yet accessible, requiring a working knowledge of very basic linear algebra and probability theory. All the results are stated as propositions so that students can see the points of the discussion and also the conditions under which those results hold. Most propositions are proved in the text. For students who intend to write a thesis on applied topics, the empirical applications in Econometrics are an excellent way to learn how to conduct empirical research. For theoretically inclined students, the no-compromise treatment of basic techniques is an ideal preparation for more advanced theory courses.
Based on two lectures presented as part of The Stone Lectures in Economics series, Arnold Zellner describes the structural econometric time series analysis (SEMTSA) approach to statistical and econometric modeling. Developed by Zellner and Franz Palm, the SEMTSA approach produces an understanding of the relationship of univariate and multivariate time series forecasting models and dynamic, time series structural econometric models. As scientists and decision-makers in industry and government world-wide adopt the Bayesian approach to scientific inference, decision-making and forecasting, Zellner offers an in-depth analysis and appreciation of this important paradigm shift. Finally Zellner discusses the alternative approaches to model building and looks at how the use and development of the SEMTSA approach has led to the production of a Marshallian Macroeconomic Model that will prove valuable to many. Written by one of the foremost practitioners of econometrics, this book will have wide academic and professional appeal.
First published in 1952, the International Bibliography of the Social Sciences (anthropology, economics, political science, and sociology) is well established as a major bibliographic reference for students, researchers and librarians in the social sciences worldwide. Key features * Authority: Rigorous standards are applied to make the IBSS the most authoritative selective bibliography ever produced. Articles and books are selected on merit by some of the world's most expert librarians and academics. *Breadth: today the IBSS covers over 2000 journals - more than any other comparable resource. The latest monograph publications are also included. *International Coverage: the IBSS reviews scholarship published in over 30 languages, including publications from Eastern Europe and the developing world. *User friendly organization: all non-English titles are word sections. Extensive author, subject and place name indexes are provided in both English and French. Place your standing order now for the 2003 volumes of the the IBSS Anthropology: 2002 Vol.48 December 2003: 234x156: Hb: 0-415-32634-6: £195.00 Economics: 2002 Vol.51 December 2003: 234x156: Hb: 0-415-32635-4: £195.00 Political Science: 2002 Vol.51 December 2003: 234x156: Hb: 0-415-32636-2: £195.00 Sociology: 2002 Vol.52 December 2003: 234x156: Hb: 0-415-32637-0: £195.00