Combinatorics and Finite Geometry

Combinatorics and Finite Geometry

Author: Steven T. Dougherty

Publisher: Springer Nature

Published: 2020-10-30

Total Pages: 374

ISBN-13: 3030563952

DOWNLOAD EBOOK

This undergraduate textbook is suitable for introductory classes in combinatorics and related topics. The book covers a wide range of both pure and applied combinatorics, beginning with the very basics of enumeration and then going on to Latin squares, graphs and designs. The latter topic is closely related to finite geometry, which is developed in parallel. Applications to probability theory, algebra, coding theory, cryptology and combinatorial game theory comprise the later chapters. Throughout the book, examples and exercises illustrate the material, and the interrelations between the various topics is emphasized. Readers looking to take first steps toward the study of combinatorics, finite geometry, design theory, coding theory, or cryptology will find this book valuable. Essentially self-contained, there are very few prerequisites aside from some mathematical maturity, and the little algebra required is covered in the text. The book is also a valuable resource for anyone interested in discrete mathematics as it ties together a wide variety of topics.


Combinatorics of Finite Geometries

Combinatorics of Finite Geometries

Author: Lynn Margaret Batten

Publisher: Cambridge University Press

Published: 1997-05-28

Total Pages: 211

ISBN-13: 0521590140

DOWNLOAD EBOOK

Thoroughly revised and updated, with an entirely new chapter on blocking sets in linear spaces.


Projective Geometry

Projective Geometry

Author: Albrecht Beutelspacher

Publisher: Cambridge University Press

Published: 1998-01-29

Total Pages: 272

ISBN-13: 9780521483643

DOWNLOAD EBOOK

Projective geometry is not only a jewel of mathematics, but has also many applications in modern information and communication science. This book presents the foundations of classical projective and affine geometry as well as its important applications in coding theory and cryptography. It also could serve as a first acquaintance with diagram geometry. Written in clear and contemporary language with an entertaining style and around 200 exercises, examples and hints, this book is ideally suited to be used as a textbook for study in the classroom or on its own.


Groups, Combinatorics and Geometry

Groups, Combinatorics and Geometry

Author: Martin W. Liebeck

Publisher: Cambridge University Press

Published: 1992-09-10

Total Pages: 505

ISBN-13: 0521406854

DOWNLOAD EBOOK

This volume contains a collection of papers on the subject of the classification of finite simple groups.


Finite Fields and Applications

Finite Fields and Applications

Author: Gary L. Mullen

Publisher: American Mathematical Soc.

Published: 2007

Total Pages: 190

ISBN-13: 0821844180

DOWNLOAD EBOOK

Finite fields Combinatorics Algebraic coding theory Cryptography Background in number theory and abstract algebra Hints for selected exercises References Index.


Authentication Codes and Combinatorial Designs

Authentication Codes and Combinatorial Designs

Author: Dingyi Pei

Publisher: CRC Press

Published: 2006-01-13

Total Pages: 253

ISBN-13: 1420003186

DOWNLOAD EBOOK

Researchers and practitioners of cryptography and information security are constantly challenged to respond to new attacks and threats to information systems. Authentication Codes and Combinatorial Designs presents new findings and original work on perfect authentication codes characterized in terms of combinatorial designs, namely strong partially


Algorithms in Combinatorial Geometry

Algorithms in Combinatorial Geometry

Author: Herbert Edelsbrunner

Publisher: Springer Science & Business Media

Published: 1987-07-31

Total Pages: 446

ISBN-13: 9783540137221

DOWNLOAD EBOOK

Computational geometry as an area of research in its own right emerged in the early seventies of this century. Right from the beginning, it was obvious that strong connections of various kinds exist to questions studied in the considerably older field of combinatorial geometry. For example, the combinatorial structure of a geometric problem usually decides which algorithmic method solves the problem most efficiently. Furthermore, the analysis of an algorithm often requires a great deal of combinatorial knowledge. As it turns out, however, the connection between the two research areas commonly referred to as computa tional geometry and combinatorial geometry is not as lop-sided as it appears. Indeed, the interest in computational issues in geometry gives a new and con structive direction to the combinatorial study of geometry. It is the intention of this book to demonstrate that computational and com binatorial investigations in geometry are doomed to profit from each other. To reach this goal, I designed this book to consist of three parts, acorn binatorial part, a computational part, and one that presents applications of the results of the first two parts. The choice of the topics covered in this book was guided by my attempt to describe the most fundamental algorithms in computational geometry that have an interesting combinatorial structure. In this early stage geometric transforms played an important role as they reveal connections between seemingly unrelated problems and thus help to structure the field.