Finite Element Model Updating Using Computational Intelligence Techniques

Finite Element Model Updating Using Computational Intelligence Techniques

Author: Tshilidzi Marwala

Publisher: Springer Science & Business Media

Published: 2010-06-04

Total Pages: 254

ISBN-13: 1849963231

DOWNLOAD EBOOK

FEM updating allows FEMs to be tuned better to reflect measured data. It can be conducted using two different statistical frameworks: the maximum likelihood approach and Bayesian approaches. This book applies both strategies to the field of structural mechanics, using vibration data. Computational intelligence techniques including: multi-layer perceptron neural networks; particle swarm and GA-based optimization methods; simulated annealing; response surface methods; and expectation maximization algorithms, are proposed to facilitate the updating process. Based on these methods, the most appropriate updated FEM is selected, a problem that traditional FEM updating has not addressed. This is found to incorporate engineering judgment into finite elements through the formulations of prior distributions. Case studies, demonstrating the principles test the viability of the approaches, and. by critically analysing the state of the art in FEM updating, this book identifies new research directions.


Probabilistic Finite Element Model Updating Using Bayesian Statistics

Probabilistic Finite Element Model Updating Using Bayesian Statistics

Author: Tshilidzi Marwala

Publisher: John Wiley & Sons

Published: 2016-09-23

Total Pages: 248

ISBN-13: 111915300X

DOWNLOAD EBOOK

Probabilistic Finite Element Model Updating Using Bayesian Statistics: Applications to Aeronautical and Mechanical Engineering Tshilidzi Marwala and Ilyes Boulkaibet, University of Johannesburg, South Africa Sondipon Adhikari, Swansea University, UK Covers the probabilistic finite element model based on Bayesian statistics with applications to aeronautical and mechanical engineering Finite element models are used widely to model the dynamic behaviour of many systems including in electrical, aerospace and mechanical engineering. The book covers probabilistic finite element model updating, achieved using Bayesian statistics. The Bayesian framework is employed to estimate the probabilistic finite element models which take into account of the uncertainties in the measurements and the modelling procedure. The Bayesian formulation achieves this by formulating the finite element model as the posterior distribution of the model given the measured data within the context of computational statistics and applies these in aeronautical and mechanical engineering. Probabilistic Finite Element Model Updating Using Bayesian Statistics contains simple explanations of computational statistical techniques such as Metropolis-Hastings Algorithm, Slice sampling, Markov Chain Monte Carlo method, hybrid Monte Carlo as well as Shadow Hybrid Monte Carlo and their relevance in engineering. Key features: Contains several contributions in the area of model updating using Bayesian techniques which are useful for graduate students. Explains in detail the use of Bayesian techniques to quantify uncertainties in mechanical structures as well as the use of Markov Chain Monte Carlo techniques to evaluate the Bayesian formulations. The book is essential reading for researchers, practitioners and students in mechanical and aerospace engineering.


Handbook Of Machine Learning - Volume 2: Optimization And Decision Making

Handbook Of Machine Learning - Volume 2: Optimization And Decision Making

Author: Tshilidzi Marwala

Publisher: World Scientific

Published: 2019-11-21

Total Pages: 321

ISBN-13: 981120568X

DOWNLOAD EBOOK

Building on , this volume on Optimization and Decision Making covers a range of algorithms and their applications. Like the first volume, it provides a starting point for machine learning enthusiasts as a comprehensive guide on classical optimization methods. It also provides an in-depth overview on how artificial intelligence can be used to define, disprove or validate economic modeling and decision making concepts.


Condition Monitoring Using Computational Intelligence Methods

Condition Monitoring Using Computational Intelligence Methods

Author: Tshilidzi Marwala

Publisher: Springer Science & Business Media

Published: 2012-01-25

Total Pages: 247

ISBN-13: 1447123808

DOWNLOAD EBOOK

Condition Monitoring Using Computational Intelligence Methods promotes the various approaches gathered under the umbrella of computational intelligence to show how condition monitoring can be used to avoid equipment failures and lengthen its useful life, minimize downtime and reduce maintenance costs. The text introduces various signal-processing and pre-processing techniques, wavelets and principal component analysis, for example, together with their uses in condition monitoring and details the development of effective feature extraction techniques classified into frequency-, time-frequency- and time-domain analysis. Data generated by these techniques can then be used for condition classification employing tools such as: • fuzzy systems; rough and neuro-rough sets; neural and Bayesian networks;hidden Markov and Gaussian mixture models; and support vector machines.


Handbook Of Machine Learning - Volume 1: Foundation Of Artificial Intelligence

Handbook Of Machine Learning - Volume 1: Foundation Of Artificial Intelligence

Author: Tshilidzi Marwala

Publisher: World Scientific

Published: 2018-10-22

Total Pages: 329

ISBN-13: 9813271248

DOWNLOAD EBOOK

This is a comprehensive book on the theories of artificial intelligence with an emphasis on their applications. It combines fuzzy logic and neural networks, as well as hidden Markov models and genetic algorithm, describes advancements and applications of these machine learning techniques and describes the problem of causality. This book should serves as a useful reference for practitioners in artificial intelligence.


Artificial Intelligence and Economic Theory: Skynet in the Market

Artificial Intelligence and Economic Theory: Skynet in the Market

Author: Tshilidzi Marwala

Publisher: Springer

Published: 2017-09-18

Total Pages: 206

ISBN-13: 3319661043

DOWNLOAD EBOOK

This book theoretically and practically updates major economic ideas such as demand and supply, rational choice and expectations, bounded rationality, behavioral economics, information asymmetry, pricing, efficient market hypothesis, game theory, mechanism design, portfolio theory, causality and financial engineering in the age of significant advances in man-machine systems. The advent of artificial intelligence has changed many disciplines such as engineering, social science and economics. Artificial intelligence is a computational technique which is inspired by natural intelligence concepts such as the swarming of birds, the working of the brain and the pathfinding of the ants. Artificial Intelligence and Economic Theory: Skynet in the Market analyses the impact of artificial intelligence on economic theories, a subject that has not been studied. It also introduces new economic theories and these are rational counterfactuals and rational opportunity costs. These ideas are applied to diverse areas such as modelling of the stock market, credit scoring, HIV and interstate conflict. Artificial intelligence ideas used in this book include neural networks, particle swarm optimization, simulated annealing, fuzzy logic and genetic algorithms. It, furthermore, explores ideas in causality including Granger as well as the Pearl causality models.


Smart Maintenance for Human–Robot Interaction

Smart Maintenance for Human–Robot Interaction

Author: Bo Xing

Publisher: Springer

Published: 2017-09-08

Total Pages: 319

ISBN-13: 3319674803

DOWNLOAD EBOOK

This self-contained book, written by active researchers, presents up-to-date information on smart maintenance strategies for human–robot interaction (HRI) and the associated applications of novel search algorithms in a single volume, eliminating the need to consult scattered resources. Unlike other books, it addresses maintaining a smart HRI from three dimensions, namely, hardware, cyberware, and hybrid-asset management, covering problems encountered in each through a wide variety of representative examples and elaborated illustrations. Further, the diverse mathematical models and intelligent systems constructions make the book highly practical. It enables readers interested in maintenance, robotics, and intelligent systems but perplexed by myriads of interrelated issues to grasp basic methodologies. At the same time, the referenced literature can be used as a roadmap for conducting deeper researches.


Economic Modeling Using Artificial Intelligence Methods

Economic Modeling Using Artificial Intelligence Methods

Author: Tshilidzi Marwala

Publisher: Springer Science & Business Media

Published: 2013-04-02

Total Pages: 271

ISBN-13: 1447150104

DOWNLOAD EBOOK

Economic Modeling Using Artificial Intelligence Methods examines the application of artificial intelligence methods to model economic data. Traditionally, economic modeling has been modeled in the linear domain where the principles of superposition are valid. The application of artificial intelligence for economic modeling allows for a flexible multi-order non-linear modeling. In addition, game theory has largely been applied in economic modeling. However, the inherent limitation of game theory when dealing with many player games encourages the use of multi-agent systems for modeling economic phenomena. The artificial intelligence techniques used to model economic data include: multi-layer perceptron neural networks radial basis functions support vector machines rough sets genetic algorithm particle swarm optimization simulated annealing multi-agent system incremental learning fuzzy networks Signal processing techniques are explored to analyze economic data, and these techniques are the time domain methods, time-frequency domain methods and fractals dimension approaches. Interesting economic problems such as causality versus correlation, simulating the stock market, modeling and controling inflation, option pricing, modeling economic growth as well as portfolio optimization are examined. The relationship between economic dependency and interstate conflict is explored, and knowledge on how economics is useful to foster peace – and vice versa – is investigated. Economic Modeling Using Artificial Intelligence Methods deals with the issue of causality in the non-linear domain and applies the automatic relevance determination, the evidence framework, Bayesian approach and Granger causality to understand causality and correlation. Economic Modeling Using Artificial Intelligence Methods makes an important contribution to the area of econometrics, and is a valuable source of reference for graduate students, researchers and financial practitioners.


Militarized Conflict Modeling Using Computational Intelligence

Militarized Conflict Modeling Using Computational Intelligence

Author: Tshilidzi Marwala

Publisher: Springer Science & Business Media

Published: 2011-08-24

Total Pages: 268

ISBN-13: 0857297902

DOWNLOAD EBOOK

Militarized Conflict Modeling Using Computational Intelligence examines the application of computational intelligence methods to model conflict. Traditionally, conflict has been modeled using game theory. The inherent limitation of game theory when dealing with more than three players in a game is the main motivation for the application of computational intelligence in modeling conflict. Militarized interstate disputes (MIDs) are defined as a set of interactions between, or among, states that can result in the display, threat or actual use of military force in an explicit way. These interactions can result in either peace or conflict. This book models the relationship between key variables and the risk of conflict between two countries. The variables include Allies which measures the presence or absence of military alliance, Contiguity which measures whether the countries share a common boundary or not and Major Power which measures whether either or both states are a major power. Militarized Conflict Modeling Using Computational Intelligence implements various multi-layer perception neural networks, Bayesian networks, support vector machines, neuro-fuzzy models, rough sets models, neuro-rough sets models and optimized rough sets models to create models that estimate the risk of conflict given the variables. Secondly, these models are used to study the sensitivity of each variable to conflict. Furthermore, a framework on how these models can be used to control the possibility of peace is proposed. Finally, new and emerging topics on modelling conflict are identified and further work is proposed.


Artificial Intelligence Techniques for Rational Decision Making

Artificial Intelligence Techniques for Rational Decision Making

Author: Tshilidzi Marwala

Publisher: Springer

Published: 2014-10-20

Total Pages: 178

ISBN-13: 3319114247

DOWNLOAD EBOOK

Develops insights into solving complex problems in engineering, biomedical sciences, social science and economics based on artificial intelligence. Some of the problems studied are in interstate conflict, credit scoring, breast cancer diagnosis, condition monitoring, wine testing, image processing and optical character recognition. The author discusses and applies the concept of flexibly-bounded rationality which prescribes that the bounds in Nobel Laureate Herbert Simon’s bounded rationality theory are flexible due to advanced signal processing techniques, Moore’s Law and artificial intelligence. Artificial Intelligence Techniques for Rational Decision Making examines and defines the concepts of causal and correlation machines and applies the transmission theory of causality as a defining factor that distinguishes causality from correlation. It develops the theory of rational counterfactuals which are defined as counterfactuals that are intended to maximize the attainment of a particular goal within the context of a bounded rational decision making process. Furthermore, it studies four methods for dealing with irrelevant information in decision making: Theory of the marginalization of irrelevant information Principal component analysis Independent component analysis Automatic relevance determination method In addition it studies the concept of group decision making and various ways of effecting group decision making within the context of artificial intelligence. Rich in methods of artificial intelligence including rough sets, neural networks, support vector machines, genetic algorithms, particle swarm optimization, simulated annealing, incremental learning and fuzzy networks, this book will be welcomed by researchers and students working in these areas.