Programming the Finite Element Method

Programming the Finite Element Method

Author: I. M. Smith

Publisher: John Wiley & Sons

Published: 2005-06-10

Total Pages: 649

ISBN-13: 0470011246

DOWNLOAD EBOOK

This title demonstrates how to develop computer programmes which solve specific engineering problems using the finite element method. It enables students, scientists and engineers to assemble their own computer programmes to produce numerical results to solve these problems. The first three editions of Programming the Finite Element Method established themselves as an authority in this area. This fully revised 4th edition includes completely rewritten programmes with a unique description and list of parallel versions of programmes in Fortran 90. The Fortran programmes and subroutines described in the text will be made available on the Internet via anonymous ftp, further adding to the value of this title.


Practical Finite Element Analysis

Practical Finite Element Analysis

Author: Nitin S. Gokhale

Publisher: FINITE TO INFINITE

Published: 2008

Total Pages: 27

ISBN-13: 8190619500

DOWNLOAD EBOOK

Highlights of the book: Discussion about all the fields of Computer Aided Engineering, Finite Element Analysis Sharing of worldwide experience by more than 10 working professionals Emphasis on Practical usuage and minimum mathematics Simple language, more than 1000 colour images International quality printing on specially imported paper Why this book has been written ... FEA is gaining popularity day by day & is a sought after dream career for mechanical engineers. Enthusiastic engineers and managers who want to refresh or update the knowledge on FEA are encountered with volume of published books. Often professionals realize that they are not in touch with theoretical concepts as being pre-requisite and find it too mathematical and Hi-Fi. Many a times these books just end up being decoration in their book shelves ... All the authors of this book are from IIT€™s & IISc and after joining the industry realized gap between university education and the practical FEA. Over the years they learned it via interaction with experts from international community, sharing experience with each other and hard route of trial & error method. The basic aim of this book is to share the knowledge & practices used in the industry with experienced and in particular beginners so as to reduce the learning curve & avoid reinvention of the cycle. Emphasis is on simple language, practical usage, minimum mathematics & no pre-requisites. All basic concepts of engineering are included as & where it is required. It is hoped that this book would be helpful to beginners, experienced users, managers, group leaders and as additional reading material for university courses.


Introduction to the Finite Element Method

Introduction to the Finite Element Method

Author: Erik G. Thompson

Publisher: John Wiley & Sons

Published: 2005

Total Pages: 368

ISBN-13:

DOWNLOAD EBOOK

This text presents an introduction to the finite element method including theory, coding, and applications. The theory is presented without recourse to any specific discipline, and the applications span a broad range of engineering problems. The codes are written in MATLAB script in such a way that they are easily translated to other computer languages such as FORTRAN. All codes given in the text are available for downloading from the text's Web page, along with data files for running the test problems shown in the text. All codes can be run on the student version of MATLAB (not included).


The Finite Element Method: Theory, Implementation, and Applications

The Finite Element Method: Theory, Implementation, and Applications

Author: Mats G. Larson

Publisher: Springer Science & Business Media

Published: 2013-01-13

Total Pages: 403

ISBN-13: 3642332870

DOWNLOAD EBOOK

This book gives an introduction to the finite element method as a general computational method for solving partial differential equations approximately. Our approach is mathematical in nature with a strong focus on the underlying mathematical principles, such as approximation properties of piecewise polynomial spaces, and variational formulations of partial differential equations, but with a minimum level of advanced mathematical machinery from functional analysis and partial differential equations. In principle, the material should be accessible to students with only knowledge of calculus of several variables, basic partial differential equations, and linear algebra, as the necessary concepts from more advanced analysis are introduced when needed. Throughout the text we emphasize implementation of the involved algorithms, and have therefore mixed mathematical theory with concrete computer code using the numerical software MATLAB is and its PDE-Toolbox. We have also had the ambition to cover some of the most important applications of finite elements and the basic finite element methods developed for those applications, including diffusion and transport phenomena, solid and fluid mechanics, and also electromagnetics.​


Introduction to Finite Element Analysis Using MATLAB® and Abaqus

Introduction to Finite Element Analysis Using MATLAB® and Abaqus

Author: Amar Khennane

Publisher: CRC Press

Published: 2013-06-10

Total Pages: 490

ISBN-13: 1466580208

DOWNLOAD EBOOK

There are some books that target the theory of the finite element, while others focus on the programming side of things. Introduction to Finite Element Analysis Using MATLAB® and Abaqus accomplishes both. This book teaches the first principles of the finite element method. It presents the theory of the finite element method while maintaining a balance between its mathematical formulation, programming implementation, and application using commercial software. The computer implementation is carried out using MATLAB, while the practical applications are carried out in both MATLAB and Abaqus. MATLAB is a high-level language specially designed for dealing with matrices, making it particularly suited for programming the finite element method, while Abaqus is a suite of commercial finite element software. Includes more than 100 tables, photographs, and figures Provides MATLAB codes to generate contour plots for sample results Introduction to Finite Element Analysis Using MATLAB and Abaqus introduces and explains theory in each chapter, and provides corresponding examples. It offers introductory notes and provides matrix structural analysis for trusses, beams, and frames. The book examines the theories of stress and strain and the relationships between them. The author then covers weighted residual methods and finite element approximation and numerical integration. He presents the finite element formulation for plane stress/strain problems, introduces axisymmetric problems, and highlights the theory of plates. The text supplies step-by-step procedures for solving problems with Abaqus interactive and keyword editions. The described procedures are implemented as MATLAB codes and Abaqus files can be found on the CRC Press website.


Boundary Element Analysis

Boundary Element Analysis

Author: Mohammed Ameen

Publisher: CRC Press

Published: 2001

Total Pages: 288

ISBN-13: 9780849310010

DOWNLOAD EBOOK

Boundary Element Analysis: Theory and Programming introduces the theory behind the boundary element method and its computer applications. The author uses Cartesian tensor notation throughout the book and includes the steps involved in deriving many of the equations. The text includes computer programs in Fortran 77 for elastostatic, plate bending, and free and forced vibration problems with detailed descriptions of the code.


Finite Element Computations in Mechanics with R

Finite Element Computations in Mechanics with R

Author: Khameel Bayo Mustapha

Publisher: CRC Press

Published: 2018-04-17

Total Pages: 271

ISBN-13: 1351385585

DOWNLOAD EBOOK

Finite Element Computations in Mechanics with R: A Problem-Centred Programming Approach provides introductory coverage of the finite element method (FEM) with the R programming language, emphasizing links between theory and implementation of FEM for problems in engineering mechanics. Useful for students, practicing engineers, and researchers, the text presents the R programming as a convenient easy-to-learn tool for analyzing models of mechanical systems, with finite element routines for structural, thermal, and dynamic analyses of mechanical systems, and also visualization of the results. Full-color graphics are used throughout the text.


Finite Element Analysis

Finite Element Analysis

Author: David S. Burnett

Publisher: Prentice Hall

Published: 1987

Total Pages: 872

ISBN-13:

DOWNLOAD EBOOK

The emphasis is on theory, programming and appilications to show exactly how Finite Element Method can be applied to quantum mechanics, heat transfer and fluid dynamics. For engineers, physicists and mathematicians with some mathematical sophistication.


The Finite Element Method and Applications in Engineering Using ANSYS®

The Finite Element Method and Applications in Engineering Using ANSYS®

Author: Erdogan Madenci

Publisher: Springer

Published: 2015-02-10

Total Pages: 664

ISBN-13: 1489975500

DOWNLOAD EBOOK

This textbook offers theoretical and practical knowledge of the finite element method. The book equips readers with the skills required to analyze engineering problems using ANSYS®, a commercially available FEA program. Revised and updated, this new edition presents the most current ANSYS® commands and ANSYS® screen shots, as well as modeling steps for each example problem. This self-contained, introductory text minimizes the need for additional reference material by covering both the fundamental topics in finite element methods and advanced topics concerning modeling and analysis. It focuses on the use of ANSYS® through both the Graphics User Interface (GUI) and the ANSYS® Parametric Design Language (APDL). Extensive examples from a range of engineering disciplines are presented in a straightforward, step-by-step fashion. Key topics include: • An introduction to FEM • Fundamentals and analysis capabilities of ANSYS® • Fundamentals of discretization and approximation functions • Modeling techniques and mesh generation in ANSYS® • Weighted residuals and minimum potential energy • Development of macro files • Linear structural analysis • Heat transfer and moisture diffusion • Nonlinear structural problems • Advanced subjects such as submodeling, substructuring, interaction with external files, and modification of ANSYS®-GUI Electronic supplementary material for using ANSYS® can be found at http://link.springer.com/book/10.1007/978-1-4899-7550-8. This convenient online feature, which includes color figures, screen shots and input files for sample problems, allows for regeneration on the reader’s own computer. Students, researchers, and practitioners alike will find this an essential guide to predicting and simulating the physical behavior of complex engineering systems."