Finite Element Analysis of Thin-Walled Structures

Finite Element Analysis of Thin-Walled Structures

Author: Dr J W Bull

Publisher: CRC Press

Published: 1988-01-25

Total Pages: 264

ISBN-13: 1482286378

DOWNLOAD EBOOK

This book describes current developments in finite element analysis and the design of certain types of thin-walled structures. The first three chapters lay the foundations for the development and use of finite elements for thin-walled structures, look at finite elements packages and discuss data input and mesh arrangements. The final four chapters use the finite element method to assist in the solution of thin-walled structure problems. Some of the problems solved include; water and air inflated structures; axisymmetric thin shells; ship structures and offshore structures. This book will be an interest to design engineers, researchers and postgraduates.


Thin-Walled Structures with Structural Imperfections

Thin-Walled Structures with Structural Imperfections

Author: L.A. Godoy

Publisher: Elsevier

Published: 1996-05-10

Total Pages: 433

ISBN-13: 0080542964

DOWNLOAD EBOOK

Thin-walled structures are designed with advanced numerical analysis techniques and constructed using sophisticated fabrication processes. There are, however, a number of factors that may result in a structure that is not exactly coincident with what was considered during the design calculations. These features may be associated with changes in the properties of the structure, in the geometry, and many others. But even small changes in the structure may sometimes produce significant changes in the response.The present work is intended to introduce professionals and researchers to the effects of imperfections on the stresses in thin-walled structures. The main idea behind the presentation is that small imperfections may introduce changes in the stresses that are nearly equal to the stresses due to the loads.The book is organized into two main parts. The first part (Chapters 1 to 6) covers the techniques for analyzing imperfections. In the second part the emphasis is on applications, which at present may be found scattered throughout many scientific and professional journals. More practical aspects of imperfections may be found in Chapter 12.It is assumed that the reader is familiar with finite element techniques, and with the basics of shell structures.


Nonlinear Mechanics of Thin-Walled Structures

Nonlinear Mechanics of Thin-Walled Structures

Author: Yury Vetyukov

Publisher: Springer Science & Business Media

Published: 2014-01-23

Total Pages: 280

ISBN-13: 3709117771

DOWNLOAD EBOOK

This book presents a hybrid approach to the mechanics of thin bodies. Classical theories of rods, plates and shells with constrained shear are based on asymptotic splitting of the equations and boundary conditions of three-dimensional elasticity. The asymptotic solutions become accurate as the thickness decreases, and the three-dimensional fields of stresses and displacements can be determined. The analysis includes practically important effects of electromechanical coupling and material inhomogeneity. The extension to the geometrically nonlinear range uses the direct approach based on the principle of virtual work. Vibrations and buckling of pre-stressed structures are studied with the help of linearized incremental formulations, and direct tensor calculus rounds out the list of analytical techniques used throughout the book. A novel theory of thin-walled rods of open profile is subsequently developed from the models of rods and shells, and traditionally applied equations are proven to be asymptotically exact. The influence of pre-stresses on the torsional stiffness is shown to be crucial for buckling analysis. Novel finite element schemes for classical rod and shell structures are presented with a comprehensive discussion regarding the theoretical basis, computational aspects and implementation details. Analytical conclusions and closed-form solutions of particular problems are validated against numerical results. The majority of the simulations were performed in the Wolfram Mathematica environment, and the compact source code is provided as a substantial and integral part of the book.


Stability and Vibrations of Thin-Walled Composite Structures

Stability and Vibrations of Thin-Walled Composite Structures

Author: Haim Abramovich

Publisher: Woodhead Publishing

Published: 2017-05-29

Total Pages: 772

ISBN-13: 008100429X

DOWNLOAD EBOOK

Stability and Vibrations of Thin-Walled Composite Structures presents engineering and academic knowledge on the stability (buckling and post buckling) and vibrations of thin walled composite structures like columns, plates, and stringer stiffened plates and shells, which form the basic structures of the aeronautical and space sectors. Currently, this knowledge is dispersed in several books and manuscripts, covering all aspects of composite materials. The book enables both engineers and academics to locate valuable, up-to-date knowledge on buckling and vibrations, be it analytical or experimental, and use it for calculations or comparisons. The book is also useful as a textbook for advanced-level graduate courses. - Presents a unified, systematic, detailed and comprehensive overview of the topic - Contains contributions from leading experts in the field - Includes a dedicated section on testing and experimental results


Static and Dynamic Buckling of Thin-Walled Plate Structures

Static and Dynamic Buckling of Thin-Walled Plate Structures

Author: Tomasz Kubiak

Publisher: Springer Science & Business Media

Published: 2013-06-28

Total Pages: 190

ISBN-13: 3319006541

DOWNLOAD EBOOK

This monograph deals with buckling and postbuckling behavior of thin plates and thin-walled structures with flat wall subjected to static and dynamic load. The investigations are carried out in elastic range. The basic assumption here is the thin plate theory. This method is used to determination the buckling load and postbuckling analysis of thin-walled structures subjected to static and dynamic load. The book introduces two methods for static and dynamic buckling investigation which allow for a wider understanding of the phenomenon. Two different methods also can allow uncoupling of the phenomena occurring at the same time and attempt to estimate their impact on the final result. A general mathematical model, adopted in proposed analytical-numerical method, enables the consideration of all types of stability loss i.e.local, global and interactive forms of buckling. The applied numerical-numerical method includes adjacent of walls, shear-lag phenomenon and a deplanation of cross-sections.


Nonlinear Analysis of Thin-Walled Structures

Nonlinear Analysis of Thin-Walled Structures

Author: James F. Doyle

Publisher: Springer Science & Business Media

Published: 2001-05-11

Total Pages: 532

ISBN-13: 9780387952161

DOWNLOAD EBOOK

Mechanical engineering, an engineering discipline born of the needs of the Industrial Revolution, is once again asked to do its substantial share in the call for industrial renewal. The general call is urgent as we face the profound issues of productivity and competitiveness that require engineering solutions, among others. The Mechanical Engineering Series is a new series, featuring graduate texts and research monographs, intended to address the need for information in contemporary areas of mechanical engineering. The series is conceived as a comprehensive one that will cover a broad range of concentrations important to mechanical engineering graduate education and research. We are fortunate to have a distinguished roster of consulting editors, each an expert in one of the areas of concentration. The names of the consult ing editors are listed on page vi. The areas of concentration are applied mechanics, biomechanics, computational mechanics, dynamic systems and control, energetics, mechanics of materials, processing, thermal science, and tribology. We are pleased to present Nonlinear Analysis of Thin-Walled Structures by James F. Doyle. Austin, Texas Frederick F. Ling Preface This book is concerned with the challenging subject of the nonlinear static, dynamic, and stability analyses of thin-walled structures. It carries on from where Static and Dynamic Analysis of Structures, published by Kluwer 1991, left off; that book concentrated on frames and linear analysis, while the present book is focused on plated structures, nonlinear analysis, and a greater emphasis on stability analysis.


Nonlinear Finite Element Analysis of Solids and Structures

Nonlinear Finite Element Analysis of Solids and Structures

Author: René de Borst

Publisher: John Wiley & Sons

Published: 2012-07-25

Total Pages: 481

ISBN-13: 1118376013

DOWNLOAD EBOOK

Built upon the two original books by Mike Crisfield and their own lecture notes, renowned scientist René de Borst and his team offer a thoroughly updated yet condensed edition that retains and builds upon the excellent reputation and appeal amongst students and engineers alike for which Crisfield's first edition is acclaimed. Together with numerous additions and updates, the new authors have retained the core content of the original publication, while bringing an improved focus on new developments and ideas. This edition offers the latest insights in non-linear finite element technology, including non-linear solution strategies, computational plasticity, damage mechanics, time-dependent effects, hyperelasticity and large-strain elasto-plasticity. The authors' integrated and consistent style and unrivalled engineering approach assures this book's unique position within the computational mechanics literature. Key features: Combines the two previous volumes into one heavily revised text with obsolete material removed, an improved layout and updated references and notations Extensive new material on more recent developments in computational mechanics Easily readable, engineering oriented, with no more details in the main text than necessary to understand the concepts. Pseudo-code throughout makes the link between theory and algorithms, and the actual implementation. Accompanied by a website (www.wiley.com/go/deborst) with a Python code, based on the pseudo-code within the book and suitable for solving small-size problems. Non-linear Finite Element Analysis of Solids and Structures, 2nd Edition is an essential reference for practising engineers and researchers that can also be used as a text for undergraduate and graduate students within computational mechanics.


Finite Element Analysis of Composite Laminates

Finite Element Analysis of Composite Laminates

Author: O.O. Ochoa

Publisher: Springer Science & Business Media

Published: 1992-09-30

Total Pages: 234

ISBN-13: 9780792311256

DOWNLOAD EBOOK

Composite materials are increasingly used in aerospace, underwater, and automotive structures. To take advantage of the full potential of composite materials, structural analysts and designers must have accurate mathematical models and design methods at their disposal. The objective of this monograph is to present the laminated plate theories and their finite element models to study the deformation, strength and failure of composite structures. Emphasis is placed on engineering aspects, such as the analytical descriptions, effective analysis tools, modeling of physical features, and evaluation of approaches used to formulate and predict the response of composite structures. The first chapter presents an overview of the text. Chapter 2 is devoted to the introduction of the definitions and terminology used in composite materials and structures. Anisotropic constitutive relations and Iaminate plate theories are also reviewed. Finite element models of laminated composite plates are presented in Chapter 3. Numerical evaluation of element coefficient matrices, post-computation of strains and stresses, and sample examples of laminated plates in bending and vibration are discussed. Chapter 4 introduces damage and failure criteria in composite laminates. Finally, Chapter 5 is dedicated to case studies involving various aspects and types of composite structures. Joints, cutouts, woven composites, environmental effects, postbuckling response and failure of composite laminates are discussed by considering specific examples.


Thin-Walled Structures

Thin-Walled Structures

Author: J.Y. Richard Liew

Publisher: Elsevier

Published: 1998-11-27

Total Pages: 841

ISBN-13: 0080552056

DOWNLOAD EBOOK

Thin-plated structures are used extensively in building construction, automobile, aircraft, shipbuilding and other industries because of a number of favourable factors such as high strength-weight ratio, development of new materials and processes and the availability of efficient analytical methods. This class of structure is made by joining thin plates together at their edges and they rely for their rigidity and strength upon the tremendous stiffness and load-carrying capacity of the flat plates from which they are made. Many of the problems encountered in these structures arise because of the effects of local buckling. The knowledge of various facets of this phenomenon has increased dramatically since the 1960s. Problem areas which were hitherto either too complex for rigorous analysis or whose subtleties were not fully realized have in these years been subjected to intensive study. Great advances have been made in the areas of inelastic buckling. The growth in use of lightweight strong materials, such as fibre-reinforced plastics has also been a contributory factor towards the need for advances in the knowledge of the far post-buckling range. The conference is a sequel to the international conference organised by the University of Strathclyde in December 1996 and this international gathering will provide the opportunity for discussion of recent developments and trends in design of thin-walled structures.


Thin-Walled Structures - Advances and Developments

Thin-Walled Structures - Advances and Developments

Author: J. Zaras

Publisher: Elsevier

Published: 2001-06-18

Total Pages: 779

ISBN-13: 008055170X

DOWNLOAD EBOOK

This volume contains the papers presented at the Third International Conference on Thin-Walled Structures, Cracow, Poland on June 5-7, 2001. There has been a substantial growth in knowledge in the field of Thin-Walled Structures over the past few decades. Lightweight structures are in widespread use in the Civil Engineering, Mechanical Engineering, Aeronautical, Automobile, Chemical and Offshore Engineering fields. The development of new processes, new methods of connections, new materials has gone hand-in-hand with the evolution of advanced analytical methods suitable for dealing with the increasing complexity of the design work involved in ensuring safety and confidence in the finished products.Of particular importance with regard to the analytical process is the growth in use of the finite element method. This method, about 40 years ago, was confined to rather specialist use, mainly in the aeronautical field, because of its requirements for substantial calculation capacity. The development over recent years of extremely powerful microcomputers has ensured that the application of the finite element method is now possible for problems in all fields of engineering, and a variety of finite element packages have been developed to enhance the ease of use and the availability of the method in the engineering design process.