A detailed and complete treatment of the Kalman-Bucy filter, as well as the non-linear filter, is given. Applications of the theory of filtering are presented in the areas of aerospace guidance and navigation. (Author).
This second edition preserves the original text of 1968, with clarification and added references. From the Preface to the Second Edition: ``Since the First Edition of this book, numerous important results have appeared--in particular stochastic integrals with respect to martingales, random fields, Riccati equation theory and realization of nonlinear filters, to name a few. In Appendix D, an attempt is made to provide some of the references that the authors have found useful and tocomment on the relation of the cited references to the field ... [W]e hope that this new edition will have the effect of hastening the day when the nonlinear filter will enjoy the same popularity in applications as the linear filter does now.''
The definitive textbook and professional reference on Kalman Filtering – fully updated, revised, and expanded This book contains the latest developments in the implementation and application of Kalman filtering. Authors Grewal and Andrews draw upon their decades of experience to offer an in-depth examination of the subtleties, common pitfalls, and limitations of estimation theory as it applies to real-world situations. They present many illustrative examples including adaptations for nonlinear filtering, global navigation satellite systems, the error modeling of gyros and accelerometers, inertial navigation systems, and freeway traffic control. Kalman Filtering: Theory and Practice Using MATLAB, Fourth Edition is an ideal textbook in advanced undergraduate and beginning graduate courses in stochastic processes and Kalman filtering. It is also appropriate for self-instruction or review by practicing engineers and scientists who want to learn more about this important topic.
The book combines both rigor and intuition to derive most of the classical results of linear and nonlinear filtering and beyond. Many fundamental results recently discovered by the author are included. Furthermore, many results that have appeared in recent years in the literature are also presented. The most interesting feature of the book is that all the derivations of the linear filter equations given in Chapters 3-11, beginning from the classical Kalman filter presented in Chapters 3 and 5, are based on one basic principle which is fully rigorous but also very intuitive and easily understandable. The second most interesting feature is that the book provides a rigorous theoretical basis for the numerical solution of nonlinear filter equations illustrated by multidimensional examples. The book also provides a strong foundation for theoretical understanding of the subject based on the theory of stochastic differential equations.
The first chapter deals with idempotent analysis per se . To make the pres- tation self-contained, in the first two sections we define idempotent semirings, give a concise exposition of idempotent linear algebra, and survey some of its applications. Idempotent linear algebra studies the properties of the semirn- ules An , n E N , over a semiring A with idempotent addition; in other words, it studies systems of equations that are linear in an idempotent semiring. Pr- ably the first interesting and nontrivial idempotent semiring , namely, that of all languages over a finite alphabet, as well as linear equations in this sern- ing, was examined by S. Kleene [107] in 1956 . This noncommutative semiring was used in applications to compiling and parsing (see also [1]) . Presently, the literature on idempotent algebra and its applications to theoretical computer science (linguistic problems, finite automata, discrete event systems, and Petri nets), biomathematics, logic , mathematical physics , mathematical economics, and optimizat ion, is immense; e. g. , see [9, 10, 11, 12, 13, 15, 16 , 17, 22, 31 , 32, 35,36,37,38,39 ,40,41,52,53 ,54,55,61,62 ,63,64,68, 71, 72, 73,74,77,78, 79,80,81,82,83,84,85,86,88,114,125 ,128,135,136, 138,139,141,159,160, 167,170,173,174,175,176,177,178,179,180,185,186 , 187, 188, 189]. In §1. 2 we present the most important facts of the idempotent algebra formalism . The semimodules An are idempotent analogs of the finite-dimensional v- n, tor spaces lR and hence endomorphisms of these semi modules can naturally be called (idempotent) linear operators on An .
This volume represents the proceedings of the Workshop on Numerical Methods and Stochastics held at The Fields Institute in April 1999. The goal of the workshop was to identify emerging ideas in probability theory that influence future work in both probability and numerical computation. The book focuses on up-to-date results and gives novel approaches to computational problems based on cutting-edge techniques from the theory of probability and stochastic processes. Three papers discuss particle system approximations to solutions of the stochastic filtering problem. Two papers treat particle system equations. The paper on rough paths describes how to generate good approximations to stochastic integrals. An expository paper discusses a long-standing conjecture: the stochastic fast dynamo effect. A final paper gives an analysis of the error in binomial and trinomial approximations to solutions of the Black-Scholes stochastic differential equations. The book is intended for graduate students and research mathematicians interested in probability theory.
Nonlinear Filtering covers linear and nonlinear filtering in a comprehensive manner, with appropriate theoretic and practical development. Aspects of modeling, estimation, recursive filtering, linear filtering, and nonlinear filtering are presented with appropriate and sufficient mathematics. A modeling-control-system approach is used when applicable, and detailed practical applications are presented to elucidate the analysis and filtering concepts. MATLAB routines are included, and examples from a wide range of engineering applications - including aerospace, automated manufacturing, robotics, and advanced control systems - are referenced throughout the text.
The purpose of this fantastically useful book is to lay out an overview on possible tools for state reconstruction in nonlinear systems. Here, basic observability notions and observer structures are recalled, together with ingredients for advanced designs on this basis. The problem of state reconstruction in dynamical systems, known as observer problem, is crucial for controlling or even merely monitoring processes. For linear systems, the theory has been well established for several years, so this book attempts to tackle the problem for non-linear systems.
This book covers a broad range of filter theories, algorithms, and numerical examples. The representative linear and nonlinear filters such as the Kalman filter, the steady-state Kalman filter, the H infinity filter, the extended Kalman filter, the Gaussian sum filter, the statistically linearized Kalman filter, the unscented Kalman filter, the Gaussian filter, the cubature Kalman filter are first visited. Then, the non-Gaussian filters such as the ensemble Kalman filter and the particle filters based on the sequential Bayesian filter and the sequential importance resampling are described, together with their recent advances. Moreover, the information matrix in the nonlinear filtering, the nonlinear smoother based on the Markov Chain Monte Carlo, the continuous-discrete filters, factorized filters, and nonlinear filters based on stochastic approximation method are detailed. 1 Review of the Kalman Filter and Related Filters 2 Information Matrix in Nonlinear Filtering 3 Extended Kalman Filter and Gaussian Sum Filter 4 Statistically Linearized Kalman Filter 5 The Unscented Kalman Filter 6 General Gaussian Filters and Applications 7 The Ensemble Kalman Filter 8 Particle Filter 9 Nonlinear Smoother with Markov Chain Monte Carlo 10 Continuous-Discrete Filters 11 Factorized Filters 12 Nonlinear Filters Based on Stochastic Approximation Method