Fault Tolerant Methods Design for a Fleet of Autonomous Vehicles Against Faults/Failures Based on Multi-agent Systems

Fault Tolerant Methods Design for a Fleet of Autonomous Vehicles Against Faults/Failures Based on Multi-agent Systems

Author: Juan Antonio Vazquez Trejo

Publisher:

Published: 2021

Total Pages: 0

ISBN-13:

DOWNLOAD EBOOK

Increasing demand for safe and reliable dynamic systems has been becoming an important subject. Modern control systems are becoming more complex and sophisticated, in consequence, the issues of availability, cost efficiency, reliability, operating safety, and environmental protection are of major importance. Fault-tolerant control has become an important subject in modern control theory and practice.Due to the higher complexity and the increasing number of components, multi-agent systems are particularly sensitive to faults, which can happen with a higher probability and result in performance degradation or breakdown of all the agents.This thesis presents the design of different fault-tolerant methods based on multi-agent system theoretical framework. The leader-following problem is considered with the aim that all agents follow the trajectory of a leader agent in spite of faults. The main contributions of this thesis are focused on control strategies for different external unknown inputs considered as faults and/or disturbances: 1) The design of an event-triggered mechanism to solve the leader-following control problem reducing the exchange of information between agents and the control update rate. 2) The design of a fault-tolerant control based on virtual actuators in multi-agent systems subject to actuators faults. 3) The design of an event-triggered formation control for multi-agent systems with communication faults. 4) The design of a quadratic boundedness leader-following control in multi-agent systems subject to bounded disturbances.The performance and effectiveness of the proposed strategies are shown through numerical examples and implementation in an experimental fleet of unmanned aerial vehicles.


From Fault Classification to Fault Tolerance for Multi-Agent Systems

From Fault Classification to Fault Tolerance for Multi-Agent Systems

Author: Katia Potiron

Publisher: Springer Science & Business Media

Published: 2013-03-21

Total Pages: 84

ISBN-13: 1447150465

DOWNLOAD EBOOK

Faults are a concern for Multi-Agent Systems (MAS) designers, especially if the MAS are built for industrial or military use because there must be some guarantee of dependability. Some fault classification exists for classical systems, and is used to define faults. When dependability is at stake, such fault classification may be used from the beginning of the system’s conception to define fault classes and specify which types of faults are expected. Thus, one may want to use fault classification for MAS; however, From Fault Classification to Fault Tolerance for Multi-Agent Systems argues that working with autonomous and proactive agents implies a special analysis of the faults potentially occurring in the system. Moreover, the field of Fault Tolerance (FT) provides numerous methods adapted to handle different kinds of faults. Some handling methods have been studied within the MAS domain, adapting to their specificities and capabilities but increasing the large amount of FT methods. Therefore, unless being an expert in fault tolerance, it is difficult to choose, evaluate or compare fault tolerance methods, preventing a lot of developed applications from not only to being more pleasant to use but, more importantly, from at least being tolerant to common faults. From Fault Classification to Fault Tolerance for Multi-Agent Systems shows that specification phase guidelines and fault handler studies can be derived from the fault classification extension made for MAS. From this perspective, fault classification can become a unifying concept between fault tolerance methods in MAS.


Fault-Tolerant Design and Control of Automated Vehicles and Processes

Fault-Tolerant Design and Control of Automated Vehicles and Processes

Author: Ralf Stetter

Publisher: Springer

Published: 2019-02-14

Total Pages: 207

ISBN-13: 3030128466

DOWNLOAD EBOOK

This book summarizes strategies, methods, algorithms, frameworks and systems for the fault-tolerant design and control of automated vehicles and processes. Intelligent systems may be able to accommodate inevitable faults, but this ability requires targeted design processes and advanced control systems. This book explains the respective elements involved in automated vehicles and processes. It provides detailed descriptions of fault-tolerant design, not offered in the existent scientific literature. With regard to fault-tolerant control, the focus is on innovative methods, which can accommodate not only uncertainties, but also shared and flexible redundant elements. The book is intended to present a concise guide for researchers in the field of fault-tolerant design and control, and to provide concrete insights for design and control engineers working in the field of automated vehicles and processes.


Methods, Models and Tools for Fault Tolerance

Methods, Models and Tools for Fault Tolerance

Author: Michael Butler

Publisher: Springer

Published: 2009-03-03

Total Pages: 350

ISBN-13: 3642008674

DOWNLOAD EBOOK

The growing complexity of modern software systems increases the di?culty of ensuring the overall dependability of software-intensive systems. Complexity of environments, in which systems operate, high dependability requirements that systems have to meet, as well as the complexity of infrastructures on which they rely make system design a true engineering challenge. Mastering system complexity requires design techniques that support clear thinking and rigorous validation and veri?cation. Formal design methods help to achieve this. Coping with complexity also requires architectures that are t- erant of faults and of unpredictable changes in environment. This issue can be addressed by fault-tolerant design techniques. Therefore, there is a clear need of methods enabling rigorous modelling and development of complex fault-tolerant systems. This bookaddressessuchacuteissues indevelopingfault-tolerantsystemsas: – Veri?cation and re?nement of fault-tolerant systems – Integrated approaches to developing fault-tolerant systems – Formal foundations for error detection, error recovery, exception and fault handling – Abstractions, styles and patterns for rigorousdevelopment of fault tolerance – Fault-tolerant software architectures – Development and application of tools supporting rigorous design of depe- able systems – Integrated platforms for developing dependable systems – Rigorous approaches to speci?cation and design of fault tolerance in novel computing systems TheeditorsofthisbookwereinvolvedintheEU(FP-6)projectRODIN(R- orous Open Development Environment for Complex Systems), which brought together researchers from the fault tolerance and formal methods communi- 1 ties. In 2007 RODIN organized the MeMoT workshop held in conjunction with the Integrated Formal Methods 2007 Conference at Oxford University.


Fault Detection and Isolation

Fault Detection and Isolation

Author: Nader Meskin

Publisher: Springer Science & Business Media

Published: 2011-01-27

Total Pages: 176

ISBN-13: 1441983937

DOWNLOAD EBOOK

“Fault Detection and Isolation: Multi-Vehicle Unmanned System” deals with the design and development of fault detection and isolation algorithms for unmanned vehicles such as spacecraft, aerial drones and other related vehicles. Addressing fault detection and isolation is a key step towards designing autonomous, fault-tolerant cooperative control of networks of unmanned systems. This book proposes a solution based on a geometric approach, and presents new theoretical findings for fault detection and isolation in Markovian jump systems. Also discussed are the effects of large environmental disturbances, as well as communication channels, on unmanned systems. The book proposes novel solutions to difficulties like robustness issues, as well as communication channel anomalies. “Fault Detection and Isolation: Multi-Vehicle Unmanned System” is an ideal book for researchers and engineers working in the fields of fault detection, as well as networks of unmanned vehicles.


Fault-Tolerant Cooperative Control of Unmanned Aerial Vehicles

Fault-Tolerant Cooperative Control of Unmanned Aerial Vehicles

Author: Ziquan Yu

Publisher: Springer Nature

Published: 2023-12-06

Total Pages: 226

ISBN-13: 9819976618

DOWNLOAD EBOOK

This book focuses on the fault-tolerant cooperative control (FTCC) of multiple unmanned aerial vehicles (multi-UAVs). It provides systematic and comprehensive descriptions of FTCC issues in multi-UAVs concerning faults, external disturbances, strongly unknown nonlinearities, and input saturation. Further, it addresses FTCC design from longitudinal motions to attitude motions, and outer-loop position motions of multi-UAVs. The book’s detailed control schemes can be used to enhance the flight safety of multi-UAVs. As such, the book offers readers an in-depth understanding of UAV safety in cooperative/formation flight and corresponding design methods. The FTCC methods presented here can also provide guidelines for engineers to improve the safety of aerospace engineering systems. The book offers a valuable asset for scientists and researchers, aerospace engineers, control engineers, lecturers and teachers, and graduates and undergraduates in the system and control community, especially those working in the field of UAV cooperation and multi-agent systems.


Rigorous Development of Complex Fault-Tolerant Systems

Rigorous Development of Complex Fault-Tolerant Systems

Author: Michael Butler

Publisher: Springer Science & Business Media

Published: 2006-11-27

Total Pages: 413

ISBN-13: 3540482652

DOWNLOAD EBOOK

This book brings together 19 papers focusing on the application of rigorous design techniques to the development of fault-tolerant, software-based systems. It is an outcome of the REFT 2005 Workshop on Rigorous Engineering of Fault-Tolerant Systems held in conjunction with the Formal Methods 2005 conference at Newcastle upon Tyne, UK, in July 2005.


Diagnosis and Fault-Tolerant Control

Diagnosis and Fault-Tolerant Control

Author: Mogens Blanke

Publisher: Springer Science & Business Media

Published: 2013-03-14

Total Pages: 583

ISBN-13: 3662053446

DOWNLOAD EBOOK

This book presents model-based analysis and design methods for fault diagnosis and fault-tolerant control. Architectural and structural models are used to analyse the propagation of the fault through the process, test fault detectability and reveal redundancies that can be used to ensure fault tolerance. Case studies demonstrate the methods presented. The second edition includes new material on reconfigurable control, diagnosis of nonlinear systems, and remote diagnosis, plus new examples and updated bibliography.


Fault-Diagnosis Systems

Fault-Diagnosis Systems

Author: Rolf Isermann

Publisher: Springer Science & Business Media

Published: 2005-10-13

Total Pages: 500

ISBN-13: 9783540241126

DOWNLOAD EBOOK

With increasing demands for efficiency and product quality plus progress in the integration of automatic control systems in high-cost mechatronic and safety-critical processes, the field of supervision (or monitoring), fault detection and fault diagnosis plays an important role. The book gives an introduction into advanced methods of fault detection and diagnosis (FDD). After definitions of important terms, it considers the reliability, availability, safety and systems integrity of technical processes. Then fault-detection methods for single signals without models such as limit and trend checking and with harmonic and stochastic models, such as Fourier analysis, correlation and wavelets are treated. This is followed by fault detection with process models using the relationships between signals such as parameter estimation, parity equations, observers and principal component analysis. The treated fault-diagnosis methods include classification methods from Bayes classification to neural networks with decision trees and inference methods from approximate reasoning with fuzzy logic to hybrid fuzzy-neuro systems. Several practical examples for fault detection and diagnosis of DC motor drives, a centrifugal pump, automotive suspension and tire demonstrate applications.