Fault Detection Techniques Using Current Signature Analysis Methods

Fault Detection Techniques Using Current Signature Analysis Methods

Author: Majid Naghmash

Publisher: LAP Lambert Academic Publishing

Published: 2012

Total Pages: 104

ISBN-13: 9783846555347

DOWNLOAD EBOOK

There are many condition monitoring methods such as vibration monitoring, thermal monitoring, chemical monitoring and acoustic emission monitoring. But all of these monitoring methods require expensive sensors and specialized tools. However, the condition monitoring method and fault diagnosis based on motor current signature are a better option since they do not require additional sensors. In this research, a novel criterion function of wavelet processing signal is introduced to diagnose the broken rotor bars in three-phase squirrel cage induction motors. This criterion function facilitates the precise diagnosis of the faults in induction motors under load variations. It uses wavelet transforms available in LabView software to process the stator current signals in the faulty induction motors to extract the wavelet coefficients in a specific time-frequency bands. Furthermore, spectrum analysis of the stator currents around the fundamental frequency is used to diagnose the faults. It is shown that the amplitudes of the frequency harmonics components fb=fs(1 2s) are influenced by the number of broken rotor bars, the exact location of broken rotor bars and the motor loading condition.


Induction Motor Fault Diagnosis

Induction Motor Fault Diagnosis

Author: Subrata Karmakar

Publisher: Springer

Published: 2016-04-04

Total Pages: 182

ISBN-13: 9811006245

DOWNLOAD EBOOK

This book covers the diagnosis and assessment of the various faults which can occur in a three phase induction motor, namely rotor broken-bar faults, rotor-mass unbalance faults, stator winding faults, single phasing faults and crawling. Following a brief introduction, the second chapter describes the construction and operation of an induction motor, then reviews the range of known motor faults, some existing techniques for fault analysis, and some useful signal processing techniques. It includes an extensive literature survey to establish the research trends in induction motor fault analysis. Chapters three to seven describe the assessment of each of the five primary fault types. In the third chapter the rotor broken-bar fault is discussed and then two methods of diagnosis are described; (i) diagnosis of the fault through Radar analysis of stator current Concordia and (ii) diagnosis through envelope analysis of motor startup current using Hilbert and Wavelet Transforms. In chapter four, rotor-mass unbalance faults are assessed, and diagnosis of both transient and steady state stator current has been analyzed using different techniques. If both rotor broken-bar and rotor-mass unbalance faults occur simultaneously then for identification an algorithm is provided in this chapter. Chapter five considers stator winding faults and five different analysis techniques, chapter six covers diagnosis of single phasing faults, and chapter seven describes crawling and its diagnosis. Finally, chapter eight focuses on fault assessment, and presents a summary of the book together with a discussion of prospects for future research on fault diagnosis.


Advanced Condition Monitoring and Fault Diagnosis of Electric Machines

Advanced Condition Monitoring and Fault Diagnosis of Electric Machines

Author: Irfan, Muhammad

Publisher: IGI Global

Published: 2018-09-14

Total Pages: 326

ISBN-13: 1522569901

DOWNLOAD EBOOK

The reliability of induction motors is a major requirement in many industrial applications. It is especially important where an unexpected breakdown might result in the interruption of critical services such as military operations, transportation, aviation, and medical applications. Advanced Condition Monitoring and Fault Diagnosis of Electric Machines is a collection of innovative research on various issues related to machinery condition monitoring, signal processing and conditioning, instrumentation and measurements, and new trends in condition monitoring. It also pays special attention to the fault identification process. While highlighting topics including spectral analysis, electrical engineering, and bearing faults, this book is an ideal reference source for electrical engineers, mechanical engineers, researchers, and graduate-level students seeking current research on various methods of maintaining machinery.


Electrical Systems 2

Electrical Systems 2

Author: Abdenour Soualhi

Publisher: John Wiley & Sons

Published: 2020-04-14

Total Pages: 188

ISBN-13: 1119720575

DOWNLOAD EBOOK

Methods of diagnosis and prognosis play a key role in the reliability and safety of industrial systems. Failure diagnosis requires the use of suitable sensors, which provide signals that are processed to monitor features (health indicators) for defects. These features are required to distinguish between operating states, in order to inform the operator of the severity level, or even the type, of a failure. Prognosis is defined as the estimation of a systems lifespan, including how long remains and how long has passed. It also encompasses the prediction of impending failures. This is a challenge that many researchers are currently trying to address. Electrical Systems, a book in two volumes, informs readers of the theoretical solutions to this problem, and the results obtained in several laboratories in France, Spain and further afield. To this end, many researchers from the scientific community have contributed to this book to share their research results.


Condition Monitoring and Faults Diagnosis of Induction Motors

Condition Monitoring and Faults Diagnosis of Induction Motors

Author: Nordin Saad

Publisher: CRC Press

Published: 2018-07-11

Total Pages: 150

ISBN-13: 1351172557

DOWNLOAD EBOOK

The book covers various issues related to machinery condition monitoring, signal processing and conditioning, instrumentation and measurements, faults for induction motors failures, new trends in condition monitoring, and the fault identification process using motor currents electrical signature analysis. It aims to present a new non-invasive and non-intrusive condition monitoring system, which has the capability to detect various defects in induction motor at incipient stages within an arbitrary noise conditions. The performance of the developed system has been analyzed theoretically and experimentally under various loading conditions of the motor. Covers current and new approaches applied to fault diagnosis and condition monitoring. Integrates concepts and practical implementation of electrical signature analysis. Utilizes LabVIEW tool for condition monitoring problems. Incorporates real-world case studies. Paves way a technology potentially for prescriptive maintenance via IIoT.


Influence of Adjustable Speed Drive on Induction Motor Fault Detection Using Stator Current Monitoring

Influence of Adjustable Speed Drive on Induction Motor Fault Detection Using Stator Current Monitoring

Author: Ali S. Al-Shahrani

Publisher:

Published: 2005

Total Pages: 204

ISBN-13:

DOWNLOAD EBOOK

The detection of motor faults at their incipient stage is of prime importance to any industrial plant. The introduction of adjustable speed drives has improved the control and the efficiency of induction motors, however, this has changed the nature of motor faults and how they can be detected. Current signature analysis has caught the attention of researchers as a mature and simple technique for motor fault diagnosis. In this research three main ways of analyzing the current signature for fault detection have been investigated. These are: the power spectral density analysis, the current negative- and positive-sequence components, and the Park?s vector approach. Three major induction motor faults have been experimentally tested for the above diagnosis techniques: the bearing fault, the broken rotor bar, and the air gap dynamic eccentricity. Using an adjustable speed drive for controlling the motor while applying these fault detection techniques has been compared to the supply of the motor directly from the "mains" source and to a pure sinusoidal supply through a programmable source. This research has proved that using the power spectral density analysis is a good tool for induction motor fault detection regardless of the source of supply. This technique can be easily implemented in standard commercial adjustable speed drives, with no additional hardware requirements.


Current Signature Analysis for Condition Monitoring of Cage Induction Motors

Current Signature Analysis for Condition Monitoring of Cage Induction Motors

Author: William T. Thomson

Publisher: John Wiley & Sons

Published: 2017-01-24

Total Pages: 438

ISBN-13: 1119029597

DOWNLOAD EBOOK

Provides coverage of Motor Current Signature Analysis (MCSA) for cage induction motors This book is primarily for industrial engineers. It has 13 chapters and contains a unique data base of 50 industrial case histories on the application of MCSA to diagnose broken rotor bars or unacceptable levels of airgap eccentricity in cage induction motors with ratings from 127 kW (170 H.P.) up to 10,160 kW (13,620 H.P.). There are also unsuccessful case histories, which is another unique feature of the book. The case studies also illustrate the effects of mechanical load dynamics downstream of the motor on the interpretation of current signatures. A number of cases are presented where abnormal operation of the driven load was diagnosed. Chapter 13 presents a critical appraisal of MCSA including successes, failures and lessons learned via industrial case histories. The case histories are presented in a step by step format, with predictions and outcomes supported by current spectra and photographic evidence to confirm a correct or incorrect diagnosis The case histories are presented in detail so readers fully understand the diagnosis The authors have 108 years of combined experience in the installation, maintenance, repair, design, manufacture, operation and condition monitoring of SCIMs There are 10 questions at the end of chapters 1 to 12 and answers can be obtained via the publisher Current Signature Analysis for Condition Monitoring of Cage Induction Motors serves as a reference for professional engineers, head electricians and technicians working with induction motors. To obtain the solutions manual for this book, please send an email to [email protected]. William T. Thomson is Director and Consultant with EM Diagnostics Ltd, in Scotland. Prof. Thomson received a BSc (Hons) in Electrical Engineering in 1973 and an MSc in 1977 from the University of Strathclyde. He has published 72 papers on condition monitoring of induction motors in a variety of engineering journals such as IEEE Transactions (USA), IEE Proceedings (UK), and also at numerous International IEEE and IEE conferences. He is a senior member of the IEEE, a fellow of the IEE (IET) in the UK and a Chartered Professional Engineer registered in the UK. Ian Culbert was a Rotating Machines Specialist at Iris Power Qualitrol since April 2002 until his very untimely death on 8th September, 2015. At this company he provided consulting services to customers, assisted in product development, trained sales and field service staff and reviewed stator winding partial discharge reports. He has co-authored two books on electrical machine insulation design, evaluation, aging, testing and repair and was principal author of a number of Electric Power Research Institute reports on motor repair. Ian was a Registered Professional Engineer in the Province of Ontario, Canada and a Senior Member of IEEE.


Electric Machines

Electric Machines

Author: Hamid A. Toliyat

Publisher: CRC Press

Published: 2017-12-19

Total Pages: 272

ISBN-13: 1420006282

DOWNLOAD EBOOK

With countless electric motors being used in daily life, in everything from transportation and medical treatment to military operation and communication, unexpected failures can lead to the loss of valuable human life or a costly standstill in industry. To prevent this, it is important to precisely detect or continuously monitor the working condition of a motor. Electric Machines: Modeling, Condition Monitoring, and Fault Diagnosis reviews diagnosis technologies and provides an application guide for readers who want to research, develop, and implement a more effective fault diagnosis and condition monitoring scheme—thus improving safety and reliability in electric motor operation. It also supplies a solid foundation in the fundamentals of fault cause and effect. Combines Theoretical Analysis and Practical Application Written by experts in electrical engineering, the book approaches the fault diagnosis of electrical motors through the process of theoretical analysis and practical application. It begins by explaining how to analyze the fundamentals of machine failure using the winding functions method, the magnetic equivalent circuit method, and finite element analysis. It then examines how to implement fault diagnosis using techniques such as the motor current signature analysis (MCSA) method, frequency domain method, model-based techniques, and a pattern recognition scheme. Emphasizing the MCSA implementation method, the authors discuss robust signal processing techniques and the implementation of reference-frame-theory-based fault diagnosis for hybrid vehicles. Fault Modeling, Diagnosis, and Implementation in One Volume Based on years of research and development at the Electrical Machines & Power Electronics (EMPE) Laboratory at Texas A&M University, this book describes practical analysis and implementation strategies that readers can use in their work. It brings together, in one volume, the fundamentals of motor fault conditions, advanced fault modeling theory, fault diagnosis techniques, and low-cost DSP-based fault diagnosis implementation strategies.


Fault Diagnosis of Induction Motors

Fault Diagnosis of Induction Motors

Author: Jawad Faiz

Publisher: IET

Published: 2017-08-29

Total Pages: 535

ISBN-13: 1785613286

DOWNLOAD EBOOK

This book is a comprehensive, structural approach to fault diagnosis strategy. The different fault types, signal processing techniques, and loss characterisation are addressed in the book. This is essential reading for work with induction motors for transportation and energy.


The Illustrated Wavelet Transform Handbook

The Illustrated Wavelet Transform Handbook

Author: Paul S Addison

Publisher: CRC Press

Published: 2002-07-15

Total Pages: 384

ISBN-13: 9781420033397

DOWNLOAD EBOOK

The Illustrated Wavelet Transform Handbook: Introductory Theory and Applications in Science, Engineering, Medicine and Finance provides an overview of the theory and practical applications of wavelet transform methods. The author uses several hundred illustrations, some in color, to convey mathematical concepts and the results of applications. The first chapter presents a brief overview of the wavelet transform, including a short history. The remainder of the book is split into two parts: the first part discusses the mathematics of both discrete and continuous wavelet transforms while the second part deals with applications in a variety of subject areas, such as geophysics, medicine, fluid turbulence, engineering testing, speech and sound analysis, image analysis, and data compression. These application chapters make the reader aware of the similarities that exist in the use of wavelet transform analysis across disciplines. A comprehensive list of more than 700 references provides a valuable resource for further study. The book is designed specifically for the applied reader in science, engineering, medicine, finance, or any other of the growing number of application areas. Newcomers to the subject will find an accessible and clear account of the theory of continuous and discrete wavelet transforms, providing a large number of examples of their use across a wide range of disciplines. Readers already acquainted with wavelets can use the book to broaden their perspective.